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Preface

The focus of this book is placed on the physics of pulsations and brings together
the knowledge from the Sun and the stars, with a particular emphasis on recent
observations and modelling, and on the influence of pulsations of other physical
processes.

Oscillations of the Sun have been widely used in the past to understand its
interior structure. The extension of similar studies to more distant stars has raised
many difficulties despite the strong efforts of the international community over
the past decades. However, we are currently witnessing a complete renewal of the
methods and models in the field of pulsations of stars due to a large extent to the
launches of the MOST and CoRoT satellites in 2003 and 2006 respectively, which
have brought results of unprecedented precision on the pulsations of stars of all
types. In particular, pulsations make it possible to derive the internal structure of
the stars, which still remains a major scientific enigma. In this context and with the
first CoRoT results in hand, it seemed interesting to confront the experience of
solar astronomers with that of stellar ones. Transposing the results obtained from
heliosismology to asterosismology has already been very profitable. No doubt that
the Kepler satellite, launched in 2009, and future space missions for asteroseis-
mology will allow us to go even further in the study of pulsations and the mod-
elling of the internal structure of the various stars.

The General Overlook of this Book is as Follows:

A general up-to-date stand-alone introduction on helioseismology is proposed by
A. Kosovichev, followed by two sections, one devoted to the Sun and the other to
the stars, linked by a transition chapter from heliosismology to asterosismology
written by S. Vauclair.

The first section of the book on the Sun is divided into four chapters.
The Sun is the only solar-type star where the dynamics and the magnetism can

be studied in detail and the physical process involved is relatively well understood,
in particular those which occur at very small scales. This chapter albeit restricted
to the quiet solar photosphere describes the properties of the three cellular scales
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of motions observed at the solar surface: granulation, mesogranulation and su-
pergranulation. The intranet work field, not yet clarified, is also tackled and the
questions are posed in a new way.

The second chapter focuses on variations of solar activity which are a result of a
complex dynamo process in the convection zone. Despite the known general
properties of the solar cycles, a reliable forecast of the 11 year sunspot number is
still a problem. However, new methods that take into account the dynamics of
turbulent magnetic helicity are capable of providing a forecast of the system, and
its application permits a good prediction of the sunspot number.

The third part focuses on solar gravity modes, which are mainly trapped inside
the radiative region and consequently are able to provide information on the
properties of the solar core. Such a topic is of high interest today as we are
wondering if the core may rotate at a higher rate than the outer envelope. However,
the detection of solar gravity modes still remains a major challenge. The issue
discussed here is important since a theoretical determination of mode amplitudes
may help to design the track for gravity modes.

The last chapter of this section deals with the rotation, and more precisely with
the differential rotation of the Sun and stars. The effects on the outer shape and to
first order, and those concerning the apparent oblateness are tackled. Thanks to the
advent of interferometry techniques, the stellar shapes can now be measured with a
great accuracy. It is shown that the core density and the gravitational moments can
be reached.

Then, the recent developments from helioseismology to asteroseismology are
presented. The general basis for asteroseismology, the so-called asymptotic theory
of stellar oscillations is discussed. Solar-type stars are discussed and examples for
which it was possible to derive precise stellar parameters from seismology are
presented, focusing on the helium abundance. The potentiality of asteroseismology
for a better knowledge of stellar structure and evolution is huge, and many new
results are expected in the near future.

The next section, consisting in five chapters, deals with stellar pulsations.
First, the requirements for a self-consistent interpretation of a collection of

observables related to rapidly rotating stars are explored. If the star is otherwise
static, rapid rotation through the centrifugal force will affect the force balance and
hence the structure of the star. Rotation also changes the surface from a spherical to a
spheroidal, and possibly in some cases an ellipsoidal, shape. Such changes have been
observed even for the Sun, and the confrontation of the theories are of importance.

In the next chapter, the effects of stellar rotation on adiabatic oscillation fre-
quencies of massive stars are presented, together with methods to evaluate them
and some of the main results for four specific stars are shown.

The following chapter deals with the extension of the asymptotic theory of
stellar oscillations beyond the case of a non-rotating, non-magnetic spherically
symmetric star. A recent application to the high-frequency acoustic modes of
rapidly rotating stars is presented.

Then, the complete interaction between low-frequency internal gravity waves
and differential rotation in stably strongly stratified stellar radiation zones is
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examined. This includes the modification of the structure of waves and of the
angular velocity.

The last chapter is devoted to excitation of solar-like oscillations that have been
detected for more than 10 years. The computed mode excitation rates crucially
depend not only on the way turbulent convection is described but also on the
stratification and the metal abundance of the upper layers of the star. In turn it is
shown how the seismic measurements collected so far allow us to infer properties
of turbulent convection in stars.

The audience targeted by this book consists of researchers, PhD students, post-
docs, and all scientists seeking a complementary culture or scientists evolving
toward new research topics.

This book is based on tutorials and discussions on the same topic held at a
CNRS school in Saint-Flour (France) in 2008, which has allowed us to give a
progress report on the very last solar developments (structure of the solar core for
example) and stellar developments (CoRoT results, new stellar models) for a better
understanding of stellar pulsations and internal structure in general. Let us remind
that a first book titled ‘‘The rotation of the Sun and Stars’’ (LNP 765) resulted from
a previous CNRS school held in Obernai (France) in 2007. We hope that this new
book the ‘‘Pulsations of the Sun and Stars’’ will provide an interesting sequell for
the reader.

The editors sincerely thank the authors for the great quality of their contribu-
tions published here. They hope that this new book will help to a better knowledge
of the wonderful world which surrounds us.

December 2010 J. P. Rozelot
C. Neiner
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Chapter 1
Advances in Global and Local Helioseismology:
An Introductory Review

Alexander G. Kosovichev

Abstract Helioseismology studies the structure and dynamics of the Sun’s interior
by observing oscillations on the surface. These studies provide information about
the physical processes that control the evolution and magnetic activity of the Sun.
In recent years, helioseismology has made substantial progress towards the under-
standing of the physics of solar oscillations and the physical processes inside the
Sun, thanks to observational, theoretical and modeling efforts. In addition to global
seismology of the Sun based on measurements of global oscillation modes, a new
field of local helioseismology, which studies oscillation travel times and local fre-
quency shifts, has been developed. It is capable of providing 3D images of subsurface
structures and flows. The basic principles, recent advances and perspectives of global
and local helioseismology are reviewed in this article.

1.1 Introduction

In 1926 in his book The Internal Constitution of the Stars Sir Eddington [1] wrote:
“At first sight it would seem that the deep interior of the Sun and stars is less accessible
to scientific investigation than any other region of the universe. Our telescopes may
probe farther and farther into the depths of space; but how can we ever obtain certain
knowledge of that which is hidden behind substantial barriers? What appliance can
pierce through the outer layers of a star and test the conditions within?”

The answer to this question was provided a half a century later by helioseismology.
Helioseismology studies the conditions inside the Sun by observing and analyzing
oscillations and waves on the surface. The solar interior is not transparent to light but
it is transparent to acoustic waves. Acoustic (sound) waves on the Sun are excited by
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Fig. 1.1 a Image of the line-of-sight (Doppler) velocity of the solar surface obtained by the Michel-
son Doppler Imager (MDI) instrument on board SOHO spacecraft on 1997-06-19, 02:00 UT;
b Oscillations of the Doppler velocity, measured by MDI at the solar disk center in 12 CCD pixels
separated by ∼1.4 Mm on the Sun

turbulent convection below the visible surface (photosphere) and travel through the
interior with the speed of sound. Some of these waves are trapped inside the Sun and
form resonant oscillation modes. The travel times of acoustic waves and frequen-
cies of the oscillation modes depend on physical conditions of the internal layers
(temperature, density, velocity of mass flows, etc.). By measuring the travel times
and frequencies one can obtain information about these condition. This is the basic
principle of helioseismology. Conceptually it is very similar to the Earth’s seis-
mology. The main difference is that the Earth’s seismology studies mostly individ-
ual events, earthquakes, while helioseismology is based on the analysis of acoustic
noise produced by solar convection. However, recently similar techniques have been
applied for ambient noise tomography of Earth’s structures. The solar oscillations are
observed in variations of intensity of solar images or, more commonly, in the line-of-
sight velocity of the surface elements, which is measured from the Doppler shift of
spectral lines (Fig. 1.1). Variations caused by these oscillations are very small, much
smaller than the noise produced by turbulent convection. Thus, their observation and
analysis require special procedures.

Helioseismology is a relatively new discipline of solar physics and astrophysics.
It has been developed over the past few decades by a large group of remarkable
observers and theorists, and is continued being actively developed. The history of
helioseismology has been very fascinating, from the initial discovery of the solar
5-min oscillations and the initial attempts to understand the physical nature and
mechanism of these oscillations to detailed diagnostics of the deep interior and
subsurface magnetic structures associated with solar activity. This development was
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not straightforward. As this always happens in science controversial results and ideas
provided inspiration for further more detailed studies.

In a brief historical introduction, I describe some key contributions. It is very
interesting to follow the line of discoveries that led to our current understanding
of the oscillations and to helioseismology techniques. Then, I overview the basic
concepts and results of helioseismology. The launch of the Solar Dynamics
Observatory (SDO) in 2010 opened a new era in helioseismology. The Helioseis-
mic and Magnetic Imager (HMI) instrument provides uninterrupted high-resolution
Doppler-shift and vector magnetogram data over the whole disk. These data will pro-
vide a complete information about the solar oscillations and their interaction with
solar magnetic fields.

1.2 Brief History of Helioseismology

Solar oscillations were discovered in 1960 by Leighton et al. [2] by analyzing series
of Dopplergrams obtained at the Mt. Wilson Observatory. Instead of the expected
turbulent behavior of the velocity field they found two distinct classes: large-scale
horizontal cellular motions, which they called supergranulation, and vertical quasi-
periodic oscillations with a period of about 300 s (5 min) and a velocity amplitude
of about 0.4 km s−1. It turned out that these oscillations are the dominant vertical
motion in the lower atmosphere (chromosphere) of the Sun. It is remarkable that they
realized the diagnostic potential noting that these oscillations “offer a new means of
determining certain local properties of the solar atmosphere, such as the temperature,
the vertical temperature gradient, or the mean molecular weight”. They also pointed
out that the oscillations might be excited in the Sun’s granulation layer, and account
for a part of the energy transfer from the convection zone into the chromosphere.

This discovery was confirmed by other observers, and for several years it was
believed that the oscillations represent transient atmospheric waves excited by gran-
ules, small convective cells on the solar surface, 1–2 × 103 km in size and 8–10 min
lifetime. The physical nature of the oscillations at that time was unclear. In particular,
the questions whether these oscillations are acoustic or gravity waves, and if they
represent traveling or standing waves remained unanswered for almost a decade after
the discovery.

Mein [3] applied a 2D Fourier analysis (in time and space) to observational data
obtained by John Evans and his colleagues at the Sacramento Peak Observatory
in 1962–1965. His idea was to decompose the oscillation velocity field into normal
modes. He calculated the oscillation power spectrum and investigated the relationship
between the period and horizontal wavelength (or frequency–wavenumber diagram).
From this analysis he concluded that the oscillations are acoustic waves that are
stationary (evanescent) in the solar atmosphere. He also made a suggestion that the
horizontal structure of the oscillations may be imposed by the convection zone below
the surface.
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Mein’s results were confirmed by Frazier [4] who analyzed high-resolution spec-
trograms taken at the Kitt Peak National Observatory in 1965. In the wavenumber–
frequency diagram he noticed that in addition to the primary 5-min peak there is a
secondary lower frequency peak, which was a new puzzle.

This puzzle was solved by Ulrich [5] who following the ideas of Mein and Frazier,
calculated the spectrum of standing acoustic waves trapped in a layer below the
photosphere. He found that these waves may exist only along discrete line in the
wavenumber–frequency (k −ω) diagram, and that the two peaks observed by Frazier
correspond to the first two harmonics (normal modes). He formulated the conditions
for observing the discrete acoustic modes: observing runs must be longer than 1 h,
must cover a sufficiently large region of, at least, 60,000 km in size; the Doppler
velocity images must have a spatial resolution of 3,000 km, and be taken at least
every 1 min.

At that time the observing runs were very short, typically, 30–40 min. Only in
1974–1975 Deubner [6] was able to obtain three 3-h sets of observations using a
magnetograph of the Fraunhofer Institute in Anacapri. He measured Doppler veloc-
ities along a ∼220, 000 km line on the solar disk by scanning it periodically at 110 s
intervals with the scanning steps of about 700 km. The Fourier analysis of these
data provided the frequency–wavenumber diagram with three or four mode ridges in
the oscillation power spectrum that represents the squared amplitude of the Fourier
components as a function of wavenumber and frequency. Deubner’s results provided
unambiguous confirmation of the idea that the 5-min oscillations observed on the
solar surface represent the standing waves or resonant acoustic modes trapped below
the surface. The lowest ridge in the diagram is easily identified as the surface gravity
wave because its frequencies depend only on the wavenumber and surface gravity.
The ridge above is the first acoustic mode, a standing acoustic waves that have one
node along the radius. The ridge above this corresponds to the second acoustic modes
with two nodes, and so on.

While these observations showed a remarkable qualitative agreement with
Ulrich’s theoretical prediction, the observed power ridges in the k − ω diagram
were systematically lower than the theoretical mode lines. Soon after, in 1975,
Rhodes et al. [7] made independent observations at the vacuum solar telescope at
the Sacramento Peak Observatory and confirmed the observational results. They also
calculated the theoretical mode frequencies for various solar models, and by com-
paring these with the observations determined the limits on the depth of the solar
convection zone. This, probably, was the first helioseismic inference.

However, it was believed that the acoustic (p)-modes do not provide much infor-
mation about the solar interior because detailed theoretical calculations of their
properties by Ando and Osaki [8] showed that while these mode are determined
by interior resonances their amplitudes (eigenfunctions) are predominantly concen-
trated close to the surface. Therefore, the main focus was shifted to observations and
analysis of global oscillations of the Sun with periods much longer than 5 min. This
task was particularly important for explaining the observed deficit of high-energy
solar neutrinos [9], which could be either due to a low temperature (or heavy ele-
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ment abundance—low metallicity) in the energy-generating core or due to neutrino
oscillations.

In 1975, Hill et al. [10] reported on the detection of oscillations in their mea-
surements of solar oblateness. The periods of these oscillations were between 10
and 40 min. They suggested that the oscillation signals might correspond to global
modes of the Sun. Independently, in 1976, two groups, led by Severny at the Crimean
Observatory [11] and Isaak at the University of Birmingham [12] found long-period
oscillations in global-Sun Doppler velocity signals. The oscillation with a period
of 160 min was particularly prominent and stable. The amplitude of this oscillation
was estimated close to 2 m/s. Later this oscillation was found in observations at the
Wilcox Solar Observatory [13] and at the geographical South Pole [14]. Despite
significant efforts to identify this oscillation among the solar resonant modes or
find a physical explanation these results remain a mystery. This oscillation lost the
amplitude and coherence in the subsequent ground-based measurements and was not
found in later observations from SOHO spacecraft [15]. The period of this oscillation
was extremely close to 1/9 of a day, and likely was related to terrestrial observing
conditions.

Nevertheless, these studies played a very important role in development of helio-
seismology and emphasized the need for long-term stable and high-accuracy obser-
vations from the ground and space. Attempts to detect long-period oscillations
(g-modes) still continue. However, the focus of helioseismology was shifted to accu-
rate measurements and analysis of the acoustic p-modes discovered by Leighton.

The next important step was made in 1979 by the Birmingham group [16]. They
observed the Doppler velocity variations integrated over the whole Sun for about
300 h (but typically 8 h a day) at two observatories, Izana, on Tenerife, and Pic du
Midi in the Pyrenees. In the power spectrum of 5-min oscillations they detected sev-
eral equally spaced lines corresponding to global (low-degree) acoustic modes, radial,
dipole and quadrupole (in terms of the angular degree these are labeled as � = 0, 1,
and 2). Unlike, the previously observed local short-horizontal-wavelength acoustic
modes these oscillations propagate into the deep interior and provide information
about the structure of the solar core. The estimated frequency spacing between the
modes was 67.8μHz. This uniform spacing predicted theoretically by Vandakurov
[17] in the framework of a general stellar oscillation theory corresponds to the inverse
time that takes for acoustic waves to travel from the surface of the Sun through the
center to the opposite side and come back. Thus, the frequency spacing immediately
gives an important constraint on the internal structure of the Sun. An initial compar-
ison with the solar models [18, 19] showed that the observed spectrum is consistent
with the spectrum of solar models with low metallicity. This result was very exciting
because it would provide a solution to the solar neutrino problem. Thus, the determi-
nation of solar metallicity (or heavy element abundance) became a central problem
of helioseismology.

In the same year, 1979, Grec et al. [14] made 5-day continuous measurements at the
Amundsen–Scott Station at the South Pole of the global oscillations and confirmed
the Birmingham result. Also, they were able to resolve the fine structure of the
oscillation spectrum and in addition to the main 67.8μHz spacing (large frequency
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separation) between the strongest peaks of � = 1 and 2, observe a small 10–16μHz
splitting (small separation) between the � = 0 and 2, and � = 1 and 3 modes.
The small separation is mostly sensitive to the central part of the Sun and provides
additional diagnostic power.

The comparison of the observed oscillation peaks in the frequency power spectra
with the p-mode frequencies calculated for solar models showed that below the
surface these oscillations correspond to the standing waves with a large number of
nodes along the radius (or high radial order). The number of nodes is between 10
and 35, and it was difficult to determine the precise values for the observed modes.
This created an uncertainty in the helioseismic determination of the heavy element
abundance. Christensen-Dalsgaard and Gough [20] pointed out that while the South
Pole and new Birmingham data favor solar models with normal metallicity the low
metallicity models cannot be ruled out.

The uncertainty was resolved three years later in 1983 when Duvall and Harvey
[21] analyzed the Doppler velocity data measured with a photo-diode array in 200
positions along the North–South direction on the disk, and obtained the diagnostic
k − ω diagram for acoustic modes of degree �, from 1 to 110. This allowed them
to connect in the diagnostic diagram the global low-� modes with the high-� modes
observed by Deubner. Since the correspondence of the ridges on Deubner’s diagram
to solar oscillation modes have been determined it was easy to identify the low-�
modes by simply counting the ridges corresponding to the low-� frequencies. It turned
out that these modes are indeed in the best agreement with the normal metallicity
solar model. This result had important implications for the solar neutrino problem
because it strongly indicated that the observed deficit of solar neutrinos was not due
to a low abundance of heavy elements on the Sun but because of changes in neutrino
properties (neutrino oscillations) on their way from the energy-generating core to the
Earth. This was later confirmed by direct measurements of solar neutrino properties
[22].

It was also important that the definite identification of the observed solar oscilla-
tions in terms of normal oscillation modes provided a solid foundation for developing
diagnostic methods of helioseismology based on the well-developed mathematical
theory of non-radial oscillations of stars [23–25]. This theory provided means for
calculating eigenfrequencies and eigenfunctions of normal modes for spherically
symmetric stellar models. Mathematically, the problem is reduced to solving a non-
linear eigenvalue problem for a fourth-order system of differential equations. This
system has two sequences of eigenvalues corresponding to p- and g-modes, and also
a degenerate solution, corresponding to f-modes (surface gravity waves). The effects
of rotation, asphericity and magnetic fields are usually small and considered by a
perturbation theory [26–29].

An important prediction of the oscillation theory is that rotation causes splitting
of normal mode frequencies. Without rotation, the normal mode frequencies are
degenerate with respect to the azimuthal wavenumber, m, that is, the modes of the
angular degree, l, and radial order, n, have the same frequencies irrespective of the
azimuthal (longitudinal) wavelength. The stellar rotation removes this degeneracy.
Obviously, it does not affect the axisymmetrical (m = 0) modes, but the frequencies of
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non-axisymmetrical modes are split. Generally, these modes can be represented as a
superposition of two waves running around a star in two opposite directions (prograde
and retrograde waves). Without rotation, these modes have the same frequencies and,
thus, the same phase speed. In this case, they form a standing wave. However, rotation
increases the speed of the prograde wave and decreases the speed of retrograde
wave. This results in an increase of the eigenfrequency of the prograde mode, and a
frequency decrease of the retrograde mode. This phenomenon is similar to frequency
shifts due to the Doppler effect. It is called rotational frequency splitting.

The rotational frequency splitting was first observed by Rhodes, Ulrich and
Deubner [30–32]. These measurements provided first evidence that the rotation rate
of the Sun is not uniform but increases with depth. The rotational splitting was ini-
tially measured for high-degree modes, but then the measurements were extended to
the medium- and low-degree range by Duvall and Harvey [33, 34], who made a long
continuous series of helioseismology observations at the South Pole. The internal
differential rotation law was determined from the data of Brown and Morrow [35].
It was found that the differential latitudinal rotation is confined in the convection
zone, and that the radiative interior rotates almost uniformly, and also is slower in
the equatorial region than in the convective envelope [36, 37]. Such rotation law was
not expected from theories of stellar rotation, which predicted that the stellar cores
rotate faster than the envelopes [38]. The knowledge of the Sun’s internal rotation law
is of particular importance for understanding the dynamo mechanism of magnetic
field generation [39].

It became clear that long uninterrupted observations are essential for accurate
inferences of the internal structure and rotation of the Sun. Therefore, the observa-
tional programs focused on development of global helioseismology networks, GONG
[40] and BiSON [41, 42], and also the Solar and Heliospheric Observatory (SOHO)
space mission [43]. These projects provided almost continuous coverage for helio-
seismic observations and also stimulated development of new sophisticated data
analysis and inversion techniques.

In addition, the Michelson Doppler Imager (MDI) instrument on SOHO [44] and
the GONG+ network, upgraded to higher spatial resolution [45], provided excel-
lent opportunities for developing local helioseismology, which provides tools for
3D imaging of the solar interior. The local helioseismology methods are based on
measurements of local oscillation properties, such as frequency shift in local areas
or variations of travel times.

The idea of using local frequency shifts for inferring the subsurface flows was
suggested by Gough and Toomre in 1983 [46]. The method is now called ring-
diagram analysis [47], because the dispersion relation of solar oscillations forms
rings in the horizontal wavenumber plane at a given frequency. It measures shifts of
these rings, which are then converted into frequency shifts.

Ten years later, Duvall and his colleagues [48] introduced time–distance helioseis-
mology method. In this method, they suggested to measure travel times of acoustic
waves from a cross-covariance function of solar oscillations. This function is obtained
by cross-correlating oscillation signals observed at two different points on the solar
surface for various time lags. When the time lag in the calculations coincides with
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the travel time of acoustic waves between these points the cross-covariance function
shows a maximum. This method provided means for developing acoustic tomogra-
phy techniques [49, 50] for imaging 3D structures and flows with the high-resolution
comparable to the oscillation wavelength. These and other methods of local area
helioseismology [51, 52] have provided important results on the convective and
large-scale flows, and also on the structure and evolution of sunspots and active
regions. Their development continues.

The SOHO mission and the GONG network were primarily designed for observ-
ing solar oscillation modes of low- and medium-degree, needed for global helioseis-
mology. Local helioseismology requires high-resolution observations of high-degree
modes. Because of the telemetry constraints such data are available uninterruptedly
from the MDI instrument on SOHO only for 2 months every year. These data pro-
vided only snapshots of the subsurface structures and dynamics associated with the
solar activity. In order to fully investigate the evolving magnetic activity of the Sun,
a new space mission Solar Dynamics Observatory (SDO) was launched on February
11, 2010. It carries the Helioseismic and Magnetic Imager (HMI) instrument, which
provides continuous 4096 × 4096-pixel full-disk images of solar oscillations. These
data open new opportunities for investigation the solar interior by local helioseis-
mology [53].

In the modern helioseismology, a very important role is played by numerical sim-
ulations. Both, global and local helioseismology analyses employ relatively simple
analysis the observational data and performing inversions of the fitted frequencies
and travel times. For instance, the global helioseismology methods assume that the
structures and flows on the Sun are axisymmetrical, and infer only the axisymmet-
rical components of the sound speed and velocity field. The local helioseismology
methods are based on a simplified physics of wave propagation on the Sun. The
ring-diagram analysis makes an assumption that the perturbations and flows are hor-
izontally uniform within the area used for calculating the wave dispersion relation,
5–15 heliographic degrees, while a typical size of sunspots is about 1–2◦. Most of
the time–distance helioseismology inversions are based on a ray-path approximation
and ignore the finite wavelength effects that become important at small scales, com-
parable with the wavelength. Also, all the methods, global and local, do not take into
account effects of solar magnetic fields.

Properties of solar oscillations dramatically change in regions of strong magnetic
field. In particular, the excitation of oscillations is suppressed in sunspots because the
strong magnetic field inhibits convection that drives the oscillations. The magnetic
stresses may cause anisotropy of wave speed and lead to transformation of acoustic
waves into various MHD type waves. These and other effects have to be investigated
and taken into account in the data analysis and inversion procedures. Because of the
complexity, these processes can be fully investigated only numerically. The numer-
ical simulations of subsurface solar convection and oscillations were pioneered by
Stein and Nordlund [54]. These 3D radiative MHD simulations include all essential
physics and provide important insights into the physical processes below the visi-
ble surface and also artificial data for helioseismology testing. This type of so-called
“realistic” simulations has been used for testing time–distance helioseismology infer-
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ences [55], and continues being developed using modern turbulence models [56]. In
addition, various aspects of wave propagation and interaction with magnetic fields
are studied by solving numerically linearized MHD equations (e.g. [57–59]). The
numerical simulations become an important tool for verification and testing of the
helioseismology methods and inferences.

1.3 Basic Properties of Solar Oscillations

1.3.1 Oscillation Power Spectrum

The theoretical spectrum of solar oscillation modes shown in Fig. 1.2 covers a wide
range of frequencies and angular degrees. It includes oscillations of three types:
acoustic (p) modes, surface gravity (f) modes and internal gravity (g) modes. In
this spectrum, the modes are organized in a series of curves corresponding to dif-
ferent overtones of non-radial modes, which are characterized by the number of
nodes along the radius (or by the radial order, n). The angular degree, l, of the cor-
responding spherical harmonics describes the horizontal wave number (or inverse
horizontal wavelength). The p-modes cover the frequency range from 0.3 to 5 mHz
(or from 3 to 55 min in oscillation periods). The low frequency limit corresponds to
the first radial harmonic, and the upper limit is set by the acoustic cut-off frequency
of the solar atmosphere. The g-modes frequencies have an upper limit corresponding
to the maximum Brunt–Väisälä frequency (∼0.45 mHz) in the radiative zone and
occupy the low-frequency part of the spectrum. The intermediate frequency range of
0.3–0.4 mHz at low angular degrees is a region of mixed modes. These modes behave
like g-modes in the deep interior and like p-modes in the outer region. The apparent
crossings in this diagram are not the actual crossings: the mode branches become
close in frequencies but do not cross each other. At these points the mode exchange
their properties, and the mode branches are diverted. For instance, the f-mode ridge
stays above the g-mode lines. A similar phenomenon is known in quantum mechanics
as avoided crossing.

So far, only the upper part of the solar oscillation spectrum is observed. The lowest
frequencies of detected p- and f-modes are about 1 mHz. At lower frequencies the
mode amplitudes decrease below the noise level, and the modes become unobserv-
able. There have been several attempts to identify low-frequency p-modes or even
g-modes in the noisy spectrum, but so far these results are not convincing.

The observed power spectrum is shown in Fig. 1.3. The lowest ridge is the
f-mode, and the other ridges are p-modes of the radial order, n, starting from n = 1.
The ridges of the oscillation modes disappear in the convective noise at frequencies
below 1 mHz. The power spectrum is obtained from the SOHO/MDI data, represent-
ing 1024 × 1024-pixel images of the line-of-sight (Doppler) velocity of the solar
surface taken every minute without interruption. When the oscillations are observed
in the integrated solar light (“Sun-as-a-star”) then only the modes of low angular
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Fig. 1.2 Theoretical frequencies of solar oscillation modes calculated for a standard solar model
for the range of angular degree l from 0 to 100, and for the frequency range from 0.2 to 5 mHz. The
solid curves connect modes corresponding to the different oscillation overtones (radial orders). The
dashed grey horizontal line indicate the low-frequency observational limit: only the modes above
this line have been reliably observed. The right panel shows an area of the avoided crossing of
f- and g-modes (indicated by the gray dashed circle in left panel)

Fig. 1.3 Power spectrum
obtained from a 6-day long
time series of solar
oscillation data from the
MDI instrument on SOHO in
1996 (ν is the cyclic
frequency of the oscillations,
l is the angular degree, λh is
the horizontal wavelength in
megameters)

degree are detected in the power spectrum (Fig. 1.4). These modes have a mean
period of about 5 min, and represent p-modes of high radial order n modes. The
n-values of these modes can be determined by tracing in Fig. 1.3 the high-n ridges
of the high-degree modes into the low-degree region. This provides unambiguous
identification of the low-degree solar modes. Obviously, the mode identification is
much more difficult for spatially unresolved oscillations of other stars.
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Fig. 1.4 Power spectral
density (PSD) of low-degree
solar oscillations, obtained
from the integrated light
observations (Sun-as-a-star)
by the GOLF instrument on
SOHO, from 11/04/1996 to
08/07/2008

1.3.2 Excitation by Turbulent Convection

Observations and numerical simulations have shown that solar oscillations are driven
by turbulent convection in a shallow subsurface layer with a superadiabatic stratifica-
tion, where convective velocities are the highest. However, details of the stochastic
excitation mechanism are not fully established. Solar convection in the superadi-
abatic layer forms small-scale granulation cells. Analysis of the observations and
numerical simulations has shown that sources of solar oscillations are associated
with strong downdrafts in dark intergranular lanes [60]. These downdrafts are driven
by radiative cooling and may reach near-sonic velocity of several kilometers per
second. This process has features of convective collapse [61].

Calculations of the work integral for acoustic modes using the realistic numerical
simulations of Stein and Nordlund [62] have shown that the principal contribution
to the mode excitation is provided by turbulent Reynolds stresses and that a smaller
contribution comes from non-adiabatic pressure fluctuations. Because of the very
high Reynolds number of the solar dynamics the numerical modeling requires an
accurate description of turbulent dissipation and transport on the numerical subgrid
scale. The recent radiative hydrodynamics modeling using the Large-Eddy Simula-
tions (LES) approach and various subgrid scale (SGS) formulations [56] showed that
among these formulations the most accurate description in terms of the total amount
of the stochastic energy input to the acoustic oscillations is provided by a dynamic
Smagorinsky model [63, 64] (Fig. 1.5a).

The observations show that the modal lines in the oscillation power spectrum are
not Lorentzians but display a strong asymmetry [67, 68]. Curiously, the asymmetry
has the opposite sense in the power spectra calculated from Doppler velocity and
intensity oscillations. The asymmetry itself can be easily explained by interference of
waves emanated by a localized source [69], but the asymmetry reversal is surprising
and indicates on a complicated radiative dynamics of the excitation process. The
reversal has been attributed to a correlated noise contribution to the observed intensity
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Fig. 1.5 a Comparison of observed and calculated rate of stochastic energy input to modes for the
entire solar surface (in erg s−1). Different curves show the numerical simulation results obtained
for four turbulence models: hyperviscosity (solid), enhanced hyperviscosity (dots), Smagorinsky
(dash-dots), and dynamic model (dashes). Observed distributions: circles SOHO–GOLF, squares
BISON, and tr iangles GONG for l = 1 [65]. b Logarithm of the work integrand in units of
erg cm−2 s−1, as a function of depth and frequency from numerical simulations with the dynamic
turbulence model [66]

oscillations [70], but the physics of this effect is still not fully understood. However, it
is clear that the line shape of the oscillation modes and the phase-amplitude relations
of the velocity and intensity oscillations carry substantial information about the
excitation mechanism and, thus, require careful data analysis and modeling.

1.3.3 Line Asymmetry and Pseudo-modes

Figure 1.6 shows the power spectrum for oscillations of the angular degree, l = 200,
obtained from the SOHO/MDI Doppler velocity and intensity data [70]. The line
asymmetry is apparent, particularly, at low frequencies. In the velocity spectrum,
there is more power in the low-frequency wings than in the high-frequency wings
of the spectral lines. In the intensity spectrum, the distribution of power is reversed.
The data also show that the asymmetry varies with frequency. It is the strongest
for the f-mode and low-frequency p-mode peaks. At higher frequencies the peaks
become more symmetrical, and extend well above the acoustic cut-off frequency
(1.51), which is ∼5–5.5 mHz.

Acoustic waves with frequencies below the cut-off frequency are completely
reflected by the surface layers because of the steep density gradient. These waves are
trapped in the interior, and their frequencies are determined by the resonant condi-
tions, which depend on the solar structure. But the waves with frequencies above the
cut-off frequency escape into the solar atmosphere. Above this frequency the power
spectrum peaks correspond to so-called “pseudo-modes”. These are caused by con-
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Fig. 1.6 Power spectra of
l = 200 modes obtained
from SOHO/MDI
observations of a Doppler
velocity, b continuum
intensity [70]
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structive interference of acoustic waves excited by the sources located in the gran-
ulation layer and traveling upward, and by the waves traveling downward, reflected
in the deep interior and arriving back to the surface. Frequencies of these modes are
no longer determined by the resonant conditions of the solar structure. They depend
on the location and properties of the excitation source (“source resonance”). The
pseudo-mode peaks in the velocity and intensity power spectra are shifted relative to
each other by almost a half-width. They are also slightly shifted relative to the nor-
mal mode peaks although they look like a continuation of the normal-mode ridges
in Figs. 1.3 and 1.7. This happens because the excitation sources are located in a
shallow subsurface layer, which is very close to the reflection layers of the normal
modes. Changes in the frequency distributions below and above the acoustic cut-off
frequency can be easily noticed by plotting the frequency differences along the modal
ridges.

The asymmetrical profiles of normal-mode peaks are also caused by the localized
excitation sources. The interference signal between acoustic waves traveling from
the source upwards, and the waves traveling from the source downward and coming
back to the surface after the internal reflection depends on the wave frequency.
Depending on the multipole type of the source the interference signal can be stronger
at frequencies lower or higher than the resonant normal frequencies, thus resulting
in asymmetry in the power distribution around the resonant peak. Calculations of
Nigam et al. [70] showed that the asymmetry observed in the velocity spectra and
the distribution of the pseudo-mode peaks can be explained by a composite source
consisting of a monopole term (mass term) and a dipole term (force due to Reynolds
stress) located in the zone of superadiabatic convection at a depth of �100 km below
the photosphere. In this model, the reversed asymmetry in the intensity power spectra
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(a) (b)

Fig. 1.7 a The oscillation power spectrum from HINODE CaII H line observations. b The phase
shift between CaII H and G-band (units are in radians) [71]

is explained by effects of a correlated noise added to the oscillation signal through
fluctuations of solar radiation during the excitation process. Indeed, if the excitation
mechanism is associated with the high-speed turbulent downdrafts in dark lanes
of granulation the local darkening contributes to the intensity fluctuations caused
by excited waves. The model also explains the shifts of pseudo-mode frequency
peaks and their higher amplitude in the intensity spectra. The difference between
the correlated and uncorrelated noise is that the correlated noise has some phase
coherence with the oscillation signal, while the uncorrelated noise has no coherence.

While this scenario looks plausible and qualitatively explains the main properties
of the power spectra, details of the physical processes are still uncertain. In particular,
it is unclear whether the correlated noise affects only the intensity signal or both the
intensity and velocity. It has been suggested that the velocity signal may have a
correlated contribution due to convective overshoot [72]. Attempts to estimate the
correlated noise components from the observed spectra have not provided conclusive
results [73, 74]. Realistic numerical simulations [75] have reproduced the observed
asymmetries and provided an indication that radiation transfer plays a critical role
in the asymmetry reversal.

Recent high-resolution observations of solar oscillations simultaneously in two
intensity filters, in molecular G-band and CaII H line, from the HINODE space
mission [76, 77] revealed significant shifts in frequencies of pseudo-modes observed
in the CaII H and G-band intensity oscillations [71]. The phase of the cross-spectrum
of these oscillations shows peaks associated with the p-mode lines but no phase shift
for the f-mode (Fig. 1.7b). The p-mode properties can be qualitatively reproduced
in a simple model with a correlated background if the correlated noise level in the
CaII H data is higher than in the G-band data [71]. Perhaps, the same effect can
explain also the frequency shift of pseudo-modes. The CaII H line is formed in the
lower chromosphere while the G-band signal comes from the photosphere. But how
this may lead to different levels of the correlated noise is unclear.



1 Advances in Global and Local Helioseismology: An Introductory Review 17

The HINODE results suggest that multi-wavelength observations of solar oscilla-
tions, in combination with the traditional intensity-velocity observations, may help
to measure the level of the correlated background noise and to determine the type of
wave excitation sources on the Sun. This is important for understanding the physical
mechanism of the line asymmetry and for developing more accurate models and
fitting formulae for determining the mode frequencies [78].

In addition, HINODE provided observations of non-radial acoustic and surface
gravity modes of very high angular degree. These observations show that the oscil-
lation ridges are extended up to l � 4000 (Fig. 1.7a). In the high-degree range,
l ≥ 2500 frequencies of all oscillations exceed the acoustic cut-off frequency. The
line width of these oscillations dramatically increases, probably due to strong scat-
tering on turbulence [79, 80]. Nevertheless, the ridge structure extending up to 8 mHz
(the Nyquist frequency of these observations) is quite clear. Although the ridge slope
clearly changes at the transition from the normal modes to the pseudo-modes.

1.3.4 Magnetic Effects: Sunspot Oscillations and Acoustic Halos

In general, the main factors causing variations in oscillation properties in magnetic
regions, can be divided in two types: direct and indirect. The direct effects are due
to additional magnetic restoring forces that can change the wave speed and may
transform acoustic waves into different types of MHD waves. The indirect effects
are caused by changes in convective and thermodynamic properties in magnetic
regions. These include depth-dependent variations of temperature and density, large-
scale flows, and changes in wave source distribution and strength. Both direct and
indirect effects may be present in observed properties such as oscillation frequencies
and travel times, and often cannot be easily disentangled by data analyses, causing
confusions and misinterpretations. Also, one should keep in mind that simple models
of MHD waves derived for various uniform magnetic configurations and without
stratification or with a polytropic stratification may not provide correct explanations
to solar phenomena. In this situation, numerical simulations play an important role
in investigations of magnetic effects.

Observed changes of oscillation amplitude and frequencies in magnetic regions
are often explained as a result of wave scattering and conversion into various MHD
modes. However, recent numerical simulations helped us to understand that magnetic
fields not only affect the wave dispersion properties but also the excitation mecha-
nism. In fact, changes in excitation properties of turbulent convection in magnetic
regions may play a dominant role in observed phenomena.

1.3.4.1 Sunspot Oscillations

For instance, it is well-known that the amplitude of 5-min oscillations is substantially
reduced in sunspots. Observations show that more waves are coming into a sunspot
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Fig. 1.8 a Line-of-sight magnetic field map of a sunspot (AR8243); b oscillation amplitude map;
c profiles of rms oscillation velocities at frequency 3.65 mHz for observations (thick solid curve)
and simulations (dashed curve); the thin solid curve shows the distribution of the simulated source
strength [83]

than going out of the sunspot area (e.g. [81]). This is often attributed to absorption of
acoustic waves in magnetic field due to conversion into slow MHD modes traveling
along the field lines (e.g. [82]). However, since convective motions are inhibited by
the strong magnetic field of sunspots, the excitation mechanism is also suppressed.
3D numerical simulations of this effect have shown that the reduction of acoustic
emissivity can explain at least 50% of the observed power deficit in sunspots (Fig. 1.8)
[83].

Another significant contribution comes from the amplitude changes caused by
variations in the background conditions. Inhomogeneities in the sound speed may
increase or decrease the amplitude of acoustic wave traveling through these inhomo-
geneities. Numerical simulations of MHD waves using magnetostatic sunspot mod-
els show that the amplitude of acoustic waves traveling through a sunspot decreases
when the wave is inside the sunspot and then increases when the wave comes out of
the sunspot [84]. Simulations with multiple random sources show that these changes
in the wave amplitude together with the suppression of acoustic sources can explain
most of the observed deficit of the power of 5-min oscillations. Thus, the role of
the MHD mode conversion may be insignificant for explaining the power deficit
of 5-min photospheric oscillations in sunspots. However, the mode conversion is
expected to be significant higher in the solar atmosphere where magnetic forces
become dominant.

We should note that while the 5-min oscillations in sunspots come mostly from
outside sources there are also 3-min oscillations, which are probably intrinsic oscil-
lations of sunspots. The origin of these oscillations is not yet understood. They are
probably excited by a different mechanism operating in strong magnetic field.

HINODE observations added new puzzles to sunspot oscillations. Figure 1.9
shows a sample Ca II H intensity and the relative intensity power maps averaged
over 1 mHz intervals in the range from 1 to 7 mHz with logarithmic greyscaling [85].
In the Ca II H power maps, in all the frequency ranges, there is a small area (∼6
arcsec in diameter) near the center of the umbra where the power was suppressed.
This type of ‘node’ has not been reported before. Possibly, the stable high-resolution
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Fig. 1.9 CaII H intensity image from HINODE observations (top-left) and the corresponding power
maps from CaII H intensity data in five frequency intervals of active region NOAA 10935. The field
of view is 100 arcsec square in all the panels. The power is displayed in logarithmic greyscaling
[85]

observation made by HINODE/SOT was required to find such a tiny node, although
analysis of other sunspots indicates that probably only a particular type of sunspots,
e.g., round ones with axisymmetric geometry, exhibit such node-like structure. Above
4 mHz in the Ca II H power maps, power in the umbra is remarkably high. In the
power maps averaged over narrower frequency range (0.05 mHz wide, not shown),
the region with high power in the umbra seems to be more patchy. This may cor-
respond to elements of umbral flashes, probably caused by overshooting convective
elements [86]. The Ca II H power maps show a bright ring in the penumbra at
lower frequencies. It probably corresponds to the running penumbral waves. The
power spectrum in the umbra has two peaks: one around 3 mHz and the other around
5.5 mHz. The high-frequency peak is caused by the oscillations that excited only in
the strong magnetic field of sunspots. The origin of these oscillations is not known
yet.

1.3.4.2 Acoustic Halos

In moderate magnetic field regions, such as plages around sunspot regions, obser-
vations reveal enhanced emission at high frequencies, 5–7 mHz (with period ∼3
min) [87]. Sometimes this emission is called the “acoustic halo” (Fig. 1.10c). There
have been several attempts to explain this effect as a result of wave transfor-
mation or scattering in magnetic structures (e.g. [88, 89]). However, numerical
simulations show that magnetic field can also change the excitation properties
of solar granulation resulting in an enhanced high-frequency emission. In par-
ticular, the radiative MHD simulations of solar convection [66] in the presence
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Fig. 1.10 a Line-of-sight magnetic field map of active region NOAA 9787 observed from
SOHO/MDI on Jan. 24, 2002 and averaged over a 3-h period; b oscillation power map from
Doppler velocity measurements for the same period in the frequency 2.5–3.8 mHz; c power map for
5.3–6.4 mHz

of vertical magnetic field have shown that the magnetic field significantly changes the
structure and dynamics of granulations, and thus the conditions of wave excitation. In
magnetic field the granules become smaller, and the turbulence spectrum is shifted
towards higher frequencies. This is illustrated in Fig. 1.11, which shows the fre-
quency spectrum of the horizontally averaged vertical velocity. Without a magnetic
field the turbulence spectrum declines sharply at frequencies above 5 mHz, but in the
presence of magnetic field it develops a plateau. In the plateau region characteristic
peaks (corresponding to the “pseudo-modes”) appear in the spectrum for moderate
magnetic field strength of about 300–600 G. These peaks may explain the effect of
the “acoustic halo”. Of course, more detailed theoretical and observational studies
are required to confirm this mechanism. In particular, multi-wavelength observations
of solar oscillations at several different heights would be important. Investigation of
the excitation mechanism in magnetic regions is also important for interpretation of
the variations of the frequency spectrum of low-degree modes on the Sun, and for
asteroseismic diagnostics of stellar activity.

1.3.5 Impulsive Excitation: Sunquakes

“Sunquakes”, the helioseismic response to solar flares, are caused by strong localized
hydrodynamic impacts in the photosphere during the flare impulsive phase. The
helioseismic waves have been observed directly as expanding circular-shaped ripples
in SOHO/MDI Dopplergrams [90] (Fig. 1.12).

These waves can be detected in Dopplergram movies and as a characteristic ridge
in time–distance diagrams (Fig. 1.13a), [90–93], or indirectly by calculating inte-
grated acoustic emission [94–96]. Solar flares are sources of high-temperature plasma
and strong hydrodynamic motions in the solar atmosphere. Perhaps, in all flares such
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Fig. 1.11 Power spectra of the horizontally averaged vertical velocity at the visible surface for
different initial vertical magnetic fields. The peaks on the top of the smooth background spectrum
of turbulent convection represent oscillation modes: the sharp asymmetric peaks below 6 mHz are
resonant normal modes, while the broader peaks above 6 mHz, which become stronger in magnetic
regions, correspond to pseudo-modes [66]

Fig. 1.12 Observations of the seismic response (“sunquakes”) of the solar flare of 9 July, 1996,
showing a sequence of Doppler-velocity images, taken by the SOHO/MDI instrument. The signal
of expanding ripples is enhanced by a factor 4 in the these images

perturbations generate acoustic waves traveling through the interior. However, only
in some flares is the impact sufficiently localized and strong to produce the seismic
waves with the amplitude above the convection noise level. It has been established in
the initial July 9, 1996, flare observations [90] that the hydrodynamic impact follows
the hard X-ray flux impulse, and hence, the impact of high-energy electrons.

A characteristic feature of the seismic response in this flare and several others
[91–93] is anisotropy of the wave front: the observed wave amplitude is much stronger
in one direction than in the others. In particular, the seismic waves excited during
the flares of 16 July, 2004, and 15 January, 2005, had the greatest amplitude in the
direction of the expanding flare ribbons (Fig. 1.14). The wave anisotropy can be
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(a) (b)

Fig. 1.13 a The time–distance diagram of the seismic response to the solar flare of 9 July, 1996.
b Illustration of acoustic ray paths of the flare-excited waves traveling through the Sun

attributed to the moving source of the hydrodynamic impact, which is located in the
flare ribbons [91, 93, 97]. The motion of flare ribbons is often interpreted as a result
of the magnetic reconnection processes in the corona. When the reconnection region
moves up it involves higher magnetic loops, the footpoints of which are further apart.
The motion of the footpoints of impact of the high-energy particles is particularly well
observed in the SOHO /MDI magnetograms showing magnetic transients moving
with supersonic speed in some cases [92]. Of course, there might be other reasons for
the anisotropy of the wave front, such as inhomogeneities in temperature, magnetic
field and plasma flows. However, the source motion seems to be a key factor.

Therefore, we conclude that the seismic wave was generated not by a single
impulse but by a series of impulses, which produce the hydrodynamic source mov-
ing on the solar surface with a supersonic speed. The seismic effect of the moving
source can be easily calculated by convolving the wave Green’s function with a mov-
ing source function. The result of these calculations is a strong anisotropic wavefront,
qualitatively similar to the observations [97]. Curiously, this effect is quite similar
to the anisotropy of seismic waves on Earth, when the earthquake rupture moves
along the fault. Thus, taking into account the effects of multiple impulses of accel-
erated electrons and the moving source is very important for sunquake theories. The
impulsive sunquake oscillations provide unique information about the interaction of
acoustic waves with sunspots. Thus, these effects must be studied in more detail.
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Fig. 1.14 Observations of the seismic response of the Sun (“sunquakes”) to two solar flares: a–c
X3 of 16 July, 2004, and d–f X1 flare of 15 January, 2005. The left panels show a superposition
of MDI white-light images of the active regions and locations of the sources of the seismic waves
determined from MDI Dopplergrams, the middle column shows the seismic waves, and the right
panels show the time–distance diagrams of these events. The thin yellow curves in the right panels
represent a theoretical time–distance relation for helioseismic waves for the standard solar model
[93]

1.4 Global Helioseismology

1.4.1 Basic Equations

A simple theoretical model of solar oscillations can be derived using the following
assumptions:

1. linearity: v/c � 1, where v is velocity of oscillating elements, c is the speed of
sound;

2. adiabaticity: d S/dt = 0, where S is the specific entropy;
3. spherical symmetry of the background state;
4. magnetic forces and Reynolds stresses are negligible.

The basic governing equations are derived from the conservation of mass, momen-
tum, energy and the Newton’s gravity law. The conservation of mass (continuity
equation) assumes that the rate of mass change in a fluid element of volume V is
equal to the mass flux through the surface of this element (area A):
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∂

∂t

∫

V

ρdV = −
∫

A

ρvda = −
∫

V

∇(ρv)dV, (1.1)

where ρ is the density. Then,

∂ρ

∂t
+ ∇(ρv) = 0, (1.2)

or in terms of the material derivative dρ/dt = ∂ρ/∂t + v · ∇ρ :
dρ

dt
+ ρ∇v = 0. (1.3)

The momentum equation (conservation of momentum of a fluid element) is:

ρ
dv

dt
= −∇ P + ρg, (1.4)

where P is pressure, g is the gravity acceleration, which can be expressed in terms
of gravitational potential �: g = ∇�, dv/dt = ∂v/∂t + v · ∇v is the material
derivative for the velocity vector. The adiabaticity equation (conservation of energy)
for a fluid element is:

d S

dt
= d

dt

(
P

ργ

)
= 0, (1.5)

or

d P

dt
= c2 dρ

dt
, (1.6)

where c2 = γ P/ρ is the squared adiabatic sound speed. The gravitational potential
is calculated from the Poisson equation:

∇2� = 4πGρ. (1.7)

Now, we consider small perturbations of a stationary spherically symmetrical star
in hydrostatic equilibrium:

v0 = 0, ρ = ρ0(r), P = P0(r).

If ξ(t) is a vector of displacement of a fluid element then velocity v of this element:

v = dξ

dt
≈ ∂ξ

∂t
. (1.8)

Perturbations of scalar variables, ρ, P,� can be of two general types: Eulerian
(denoted with prime symbol) at a fixed position r :
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ρ(r, t) = ρ0(r)+ ρ′(r, t),

and Lagrangian, measured in the moving element (denoted with δ):

δρ(r + ξ) = ρ0(r)+ δρ(r, t). (1.9)

The Eulerian and Lagrangian perturbations are related to each other:

δρ = ρ′ + (ξ · ∇ρ0) = ρ′ + (ξ · er )
dρ0

dr
= ρ′ + ξr

dρ0

dr
, (1.10)

where er is the radial unit vector.
In terms of the Eulerian perturbations and the displacement vector, ξ , the lin-

earized mass, momentum and energy equations can be expressed in the following
form:

ρ′ + ∇(ρ0ξ) = 0, (1.11)

ρ0
∂v

∂t
= −∇ P ′ − g0erρ

′ + ρ0∇�′, (1.12)

P ′ + ξr
d P0

dr
= c2

0

(
ρ′ + ξr

dρ0

dr

)
, (1.13)

∇2�′ = 4πGρ′. (1.14)

The equations of solar oscillations can be further simplified by neglecting the
perturbations of the gravitational potential, which gives relatively small corrections to
theoretical oscillation frequencies. This is so-called Cowling approximation:�′ = 0.

Now, we consider the linearized equations in the spherical coordinate system,
r, θ, φ. In this system, the displacement vector has the following form:

ξ = ξr er + ξθ eθ + ξφeφ ≡ ξr er + ξh, (1.15)

where ξh = ξθ eθ + ξφeφ is the horizontal component of displacement. Also, we use
the equation for divergence of the displacement (called dilatation):

∇ξ ≡ divξ = 1

r2

∂

∂r
(r2ξr )+ 1

r sin θ

∂

∂θ
(sin θξθ )+ 1

r sin θ

∂ξφ

∂φ

= 1

r2

∂

∂r
(r2ξr )+ 1

r
∇hξh .

(1.16)

We consider periodic perturbations with frequency ω : ξ ∝ exp(iωt), . . . Here, ω is
the angular frequency measured in rad/s; it relates to the cyclic frequency, ν, which
measures the number of oscillation cycles per second, as: ω = 2πν.
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Then, in the Cowling approximation, we obtain the following system of the lin-
earized equations (omitting subscript 0 for unperturbed variables):

ρ′ + 1

r2

∂

∂r
(r2ρξr )+ ρ

r
∇hξh = 0, (1.17)

−ω2ρξr = −∂P ′

∂r
+ gρ′, (1.18)

−ω2ρξ h = −1

r
∇h P ′, (1.19)

ρ′ = 1

c2 P ′ + ρN 2

g
ξr , (1.20)

where

N 2 = g

(
1

γ P

d P

dr
− 1

ρ

dρ

dr

)
(1.21)

is the Brunt–Väisälä (or buoyancy) frequency.
For the boundary conditions, we assume that the solution is regular at the Sun’s

center. This corresponds to the zero displacement, ξr = 0 at r = 0, for all oscillation
modes except of the dipole modes of angular degree l = 1. In the dipole-mode
oscillations the center of a star oscillates (but not the center of mass), and the boundary
condition at the center is replaced by a regularity condition. At the surface, we assume
that the Lagrangian pressure perturbation is zero: δP = 0 at r = R.This is equivalent
to the absence of external forces. Also, we assume that the solution is regular at the
poles θ = 0, π.

We seek a solution of (1.17–1.20) by separation of the radial and angular variables
in the following form:

ρ′(r, θ, φ) = ρ′(r) · f (θ, φ), (1.22)

P ′(r, θ, φ) = P ′(r) · f (θ, φ), (1.23)

ξr (r, θ, φ) = ξr (r) · f (θ, φ), (1.24)

ξ h(r, θ, φ) = ξh(r)∇h f (θ, φ). (1.25)

Then, in the continuity equation:

[
ρ′ + 1

r2

∂

∂r
(r2ρξr )

]
f (θ, φ)+ ρ

r
ξh∇2

h f = 0. (1.26)
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the radial and angular variables can be separated if

∇2
h f = α f, (1.27)

where α is a constant.
It is well-known that this equation has a non-zero solution regular at the poles

(θ = 0, π ) only when

α = −l(l + 1), (1.28)

where l is an integer. This non-zero solution is:

f (θ, φ) = Y m
l (θ, φ) ∝ Pm

l (θ)e
imφ, (1.29)

where Pm
l (θ) is the associated Legendre function of angular degree l and order m.

Then, the continuity equation for the radial dependence of the Eulerian density
perturbation, ρ′(r), takes the form:

ρ′ + 1

r2

∂

∂r

(
r2ρξr

)
− l(l + 1)

r2 ρξh = 0. (1.30)

The horizontal component of displacement ξh can be determined from the horizontal
component of the momentum equation:

−ω2ρξh(r) = −1

r
P ′(r), (1.31)

or

ξh = 1

ω2ρr
P ′. (1.32)

Substituting this into the continuity equation (1.30) we get:

ρ
dξr
dr

+ ξh
dρ

dr
+ 2

r
ρξr + P ′

c2 + ρN 2

g
ξr − L2

r2ω2ρ
P ′ = 0, (1.33)

where we define L2 = l(l + 1).
Using the hydrostatic equation for the background (unperturbed) state,

d P/dr = −gρ, we finally obtain:

dξr
dr

+ 2

r
ξr − g

c2 ξr +
(

1 − L2c2

r2ω2

)
P ′

ρc2 = 0, (1.34)

or

dξr
dr

+ 2

r
ξr − g

c2 ξr +
(

1 − S2
l

ω2

)
P ′

ρc2 = 0, (1.35)
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where

S2
l = L2c2

r2 (1.36)

is the Lamb frequency.
Similarly, for the momentum equation we obtain:

d P ′

dr
+ g

c2 P ′ + (N 2 − ω2)ρξr = 0. (1.37)

The inner boundary condition at the Sun’s center is:

ξr = 0, (1.38)

or a regularity condition for l = 1.
The outer boundary condition at the surface (r = R) is:

δP = P ′ + d P

dr
ξr = 0. (1.39)

Applying the hydrostatic equation, we get:

P ′ − gρξr = 0. (1.40)

Using the horizontal component of the momentum equation: P ′ = ω2ρrξh, the
outer boundary condition (1.40) can be written in the following form:

ξh

ξr
= g

ω2r
, (1.41)

that is, the ratio of the horizontal and radial components of displacement is inverse
proportional to the squared oscillation frequency. However, observations show that
this relation is only approximate, presumably, because of the external force caused
by the solar atmosphere.

Equations (1.35) and (1.37) with boundary conditions (1.38–1.40) constitute an
eigenvalue problem for solar oscillation modes. This eigenvalue problem can be
solved numerically for any solar or stellar model. The solution gives the frequencies,
ωnl , and the radial eigenfunctions, ξ (n,l)r (r) and P ′(n,l)(r), of the normal modes.

The radial eigenfunctions multiplied by the angular eigenfunctions (1.22–1.25)
represented by the spherical harmonics (1.29) give 3D oscillation eigenfunctions of
the normal modes, e.g.:

ξr (r, θ, φ, ω) = ξ (n,l)r (r)Y m
l (θ, φ). (1.42)

Examples of such two eigenfunctions for p- and g-modes are shown in Fig. 1.15. It
illustrates the typical behavior of the modes: the p-modes are concentrated (have the
strongest amplitude) in the outer layers of the Sun, and g-modes are mostly confined
in the central region.
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Fig. 1.15 Eigenfunctions (1.42) of two normal oscillation modes of the Sun: a p-mode of angular
degree l = 20, angular degree m = 16, and radial order n = 16, b g-mode of l = 5, m = 3, and
n = 5. Red and blue–green colors correspond to positive and negative values of ξr

1.4.2 JWKB Solution

The basic properties of the oscillation modes can be investigated analytically using
an asymptotic approximation. In this approximation, we assume that only density
ρ(r) varies significantly among the solar properties in the oscillation equations, and
seek for an oscillatory solution in the JWKB form:

ξr = Aρ−1/2eikr r , (1.43)

P ′ = Bρ1/2eikr r , (1.44)

where the radial wavenumber kr is a slowly varying function of r; A and B are
constants.

Then, substituting these in (1.35) and (1.37) we obtain:

dξr
dr

= −Aρ−1/2
(

−ikr + 1

H

)
eikr r , (1.45)

d P ′

dr
= −Bρ1/2

(
−ikr − 1

H

)
eikr r , (1.46)

where

H =
(

d log ρ

dr

)−1

, (1.47)

is the density scale height.
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From (1.45, 1.46) we get a linear system for the constants, A and B:
(

−ikr + 1

H

)
A − g

c2 A + 1

c2

(
1 − S2

l

ω2

)
B = 0, (1.48)

(
−ikr − 1

H

)
B + g

c2 B + (N 2 − ω2)A = 0. (1.49)

It has a non-zero solution when the determinant is equal zero, that is, when

k2
r = ω2 − ω2

c

c2 + S2
l

c2ω2

(
N 2 − ω2

)
, (1.50)

where

ωc = c

2H
(1.51)

is the acoustic cut-off frequency. Here, we used the relation: N 2 = g/H − g2/c2.

The frequencies of solar modes depend on the sound speed, c, and three charac-
teristic frequencies: acoustic cut-off frequency,ωc (1.51), Lamb frequency, Sl (1.36),
and Brunt–Väisälä frequency, N (1.21). These frequencies calculated for a standard
solar model are shown in Fig. 1.16. The acoustic cut-off and Brunt–Väisälä frequen-
cies depend only on the solar structure, but the lamb frequency depends also on the
mode angular degree, l. This diagram is very useful for determining the regions of
mode propagation. The waves propagate in the regions where the radial wavenum-
ber is real, that k2

r > 0. If k2
r < 0 then the waves exponentially decay with distance

(become ‘evanescent’). The characteristic frequencies define the boundaries of the
propagation regions, also called the wave turning points. The region of propagation
for p- and g-modes are indicated in Fig. 1.16, and are discussed in the following
sections.

We define a horizontal wavenumber as

kh ≡ L

r
, (1.52)

where L = √
l(l + 1). This definition follows from the angular part of the wave

equation (1.27):

1

r2 ∇2
h Y m

l + l(l + 1)

r2 Y m
l = 0, (1.53)

where ∇h is the horizontal component of gradient. It can be rewritten in terms of
horizontal wavenumber: kh,

1
r2 ∇2

h Y m
l + k2

hY m
l = 0 if k2

h = l(l + 1)/r2.

In terms of kh the Lamb frequency is Sl = khc, and (1.50) takes the form:

k2
r = ω2 − ω2

c

c2 + k2
h

(
N 2

ω2 − 1

)
, (1.54)
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Fig. 1.16 Buoyancy
(Brunt–Väisälä) frequency
N (thick curve), acoustic
cut-off frequency, ωc (thin
curve) and Lamb frequency
Sl for l = 1, 5, 20, 50, and
100 (dashed curves) vs.
fractional radius r/R for a
standard solar model. The
horizontal lines with arrows
indicate the trapping regions
for a g mode with frequency
ν = 0.2 mHz, and for a
sample of five p modes:
l = 1, ν = 1 mHz; l = 5,
ν = 2 mHz; l = 20, ν = 3
mHz; l = 50, ν = 4 mHz;
l = 100, ν = 5 mHz
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The frequencies of normal modes are determined for the Bohr quantization rule
(resonant condition):

r2∫

r1

kr dr = π(n + α), (1.55)

where r1 and r2 are the radii of the inner and outer turning points where kr = 0,
n is the radial order - integer number, and α is a phase shift which depends on
properties of the reflecting boundaries.

1.4.3 Dispersion Relations for p- and g-modes

For high-frequency oscillations, when ω2  N 2, the dispersion relation (1.54) can
be written as:

k2
r = ω2 − ω2

c

c2 − S2
l

c2 = ω2 − ω2
c

c2 − k2
h . (1.56)

Then, we obtain:

ω2 = ω2
c + (k2

r + k2
h)c

2 ≡ ω2
c + k2c2. (1.57)

This is the dispersion relation for acoustic (p) modes, ωc is the acoustic cut-off
frequency. The waves with frequencies less than ωc (or wavelength λ > 4πH ) do
not propagate. These waves exponentially decay, and are called ‘evanescent’.
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For low-frequency perturbations, when ω2 � S2
l , one gets:

k2
r = S2

l

c2ω2 (N
2 − ω2) = k2

h

ω2 (N
2 − ω2), (1.58)

and

ω2 = k2
h N 2

k2
r

≡ N 2 cos2 θ, (1.59)

where θ is the angle between the wavevector, k, and horizontal surface.
These waves are called internal gravity waves or g-modes. They propagate mostly

horizontally, and only if ω2 < N 2. The frequency of the internal gravity waves does
not depend on the wavenumber, but on the direction of propagation. These waves
are evanescent if ω2 > N 2.

1.4.4 Frequencies of p- and g-modes

Now, we use the Bohr quantization rule (1.55) and the dispersion relations for the p-
and g-modes (1.57, 1.58) to derive the mode frequencies.

p-modes: The modes propagate in the region where k2
r > 0; and the radii of the

turning points, r1 and r2, are determined from the relation k2
r = 0:

ω2 = ω2
c + L2c2

r2 = 0. (1.60)

The acoustic cut-off frequency is only significant near the Sun’s surface. The lower
turning point is located in the interior where ωc � ω (Fig. 1.16). Then, at the lower
turning point, r = r1: ω ≈ Lc/r, or

c(r1)

r1
= ω

L
(1.61)

represents the equation for the radius of the lower turning point, r1.The upper turning
point is determined by the acoustic frequency term: ωc(r2) ≈ ω. Since ωc(r) is a
steep function of r near the surface, then

r2 ≈ R. (1.62)

The p-mode propagation region is illustrated in Fig. 1.16. Thus, the resonant condition
for the p-modes is:

R∫

r1

√
ω2

c2 − L2

r2 dr = π(n + α). (1.63)



1 Advances in Global and Local Helioseismology: An Introductory Review 33

Fig. 1.17 Spectrum of
normal modes calculated for
the standard solar model.
The thick gray curve shows
f -mode. Labels p1–p33
mark p-modes of the radial
order n = 1, . . . , 33
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In the case of the low-degree “global” modes, for which l � n, the lower turning
point is almost at the center, r1 ≈ 0, and we obtain [17]:

ω ≈ π(n + L/2 + α)∫ R
0 dr/c

. (1.64)

This relation shows that the spectrum of low-degree p-modes is approximately
equidistant with the frequency spacing:

�ν =
⎛
⎝4

R∫

0

dr

c

⎞
⎠

−1

. (1.65)

This corresponds very well to the observational power spectrum shown in Fig. 1.4.
According to this relation, the frequencies of mode pairs, (n, l) and (n − 1, l + 2),
coincide. However, calculations to the second-order approximation shows that the
frequencies in these pairs are separated by the amount [98, 99]:

δνnl = νnl − νn−1,l+2 ≈ −(4l + 6)
�ν

4π2νnl

R∫

0

dc

dr

dr

r
. (1.66)

This is the so-called “small separation”. For the Sun, �ν ≈ 136μHz, and δν ≈ 9μ
Hz. The l-ν diagram for the p-modes is illustrated in Fig. 1.17.
g-modes: The turning points, kr = 0, are determined from (1.58):

N (r) = ω. (1.67)

In the propagation region, kr > 0, (see Fig. 1.16), far from the turning points
(N  ω):
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Fig. 1.18 Periods of solar
oscillation modes in the
angular degree range,
l = 0–10. Labels g1–g6
mark g-modes of the radial
order n = 1, . . . , 6
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kr ≈ L N

rω
. (1.68)

Then, from the resonant condition:

r2∫

r1

L

ω
N

dr

r
= π(n + α) (1.69)

we find an asymptotic formula for the g-mode frequencies:

ω ≈ L
∫ r2

r1
N dr

r

π(n + α)
. (1.70)

It follows that for a given l value the oscillation periods form a regular equally spaced
pattern:

P = 2π

ω
= π(n + α)

L
∫ r2

r1
N dr

r

. (1.71)

The distribution of numerically calculated g-mode periods is shown in Fig. 1.18.

1.4.5 Asymptotic Ray-path Approximation

The asymptotic approximation provides an important representation of solar oscil-
lations in terms of the ray theory. Consider the wave path equation in the ray
approximation:
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∂ r
∂t

= ∂ω

∂k
. (1.72)

Then, the radial and angular components of this equation are:

dr

dt
= ∂ω

∂kr
, (1.73)

r
dθ

dt
= ∂ω

∂kh
. (1.74)

Using the dispersion relation for acoustic (p) modes:

ω2 = c2(k2
r + k2

h), (1.75)

in which we neglected the ωc term (it can be neglected everywhere except near the
upper turning point, R), we get

dt = dr

c
(
1 − k2

hc2/ω2
)1/2 . (1.76)

From this we find the travel time from the lower turning point to the surface.
The equation for the acoustic ray path is given by the ratio of equations (1.74)

and (1.76):

r
dθ

dr
=
(
∂ω

∂kh

)
/

(
∂ω

∂kr

)
= kh

kr
, (1.77)

or

r
dθ

dr
= kh

kr
= L/r√

ω2/c2 − L2/r2
. (1.78)

For any given values of ω and l, and initial coordinates, r and θ, this equation gives
trajectories of ray paths of p-modes inside the Sun. The ray paths calculated for two
solar p-modes are shown in Fig. 1.19a. They illustrate an important property that the
acoustic waves excited by a source near the solar surface travel into the interior and
come back to surface. The distance, �, between the surface points for one skip can
be calculated as the integral:

� = 2

R∫

r1

dθ = 2

R∫

r1

L/r√
ω2/c2 − L2/r2

dr ≡ 2

R∫

r1

c/r√
ω2/L2 − c2/r2

dr. (1.79)

The corresponding travel time is calculated by integrating equation (1.76):

τ = 2

R∫

r1

dt =
R∫

r1

dr

c
(
1 − k2

hc2/ω2
)1/2 ≡

R∫

r1

dr

c
(
1 − L2c2/r2ω2

)1/2 . (1.80)
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Fig. 1.19 Ray paths for a two solar p-modes of angular degree l = 2, frequency ν = 1429.4
μHz (thick curve), and l = 100, ν = 3357.5μHz (thin curve); b g-mode of l = 5, ν = 192.6
μHz (the dotted curve indicates the base of the convection zone). The lower turning points, r1 of
the p-modes are shown by arrows. The upper turning points of these modes are close to the surface
and not shown. For the g-mode, the upper turning point, r2, is shown by arrow. The inner turning
point is close to the center and not shown

These equations give a time–distance relation, τ −�, for acoustic waves traveling
between two surface points through the solar interior. The ray representation of the
solar modes and the time–distance relation provided a motivation for developing
time–distance helioseismology (Sect. 1.7), a local helioseismology method [48].

The ray paths for g-modes are calculated similarly. For the g-modes, the dispersion
relation is:

ω2 = k2
h N 2

k2
r + k2

h

. (1.81)

Then, the corresponding ray path equation is:

r
dθ

dr
= − kr

kh
= −

√
N 2

ω2 − 1. (1.82)

The solution for a g-mode of l = 5, ν = 192.6μHz is shown in Fig. 1.19b. Note
that the g-mode travels mostly in the central region. Therefore, the frequencies of
g-modes are mostly sensitive to the central conditions.
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1.4.6 Duvall’s Law

The solar p-modes, observed in the period range of 3–8 min, can be considered
as high-frequency modes and described by the asymptotic theory quite accurately.
Consider the resonant condition (1.63) for p-modes:

R∫

r1

(
ω2

c2 − L2

r2

)1/2

dr = π(n + α), (1.83)

Dividing both sides by ω we get:

R∫

r1

(
r2

c2 − L2

ω2

)1/2
dr

r
= π(n + α)

ω
. (1.84)

Since the lower integral limit, r1 depends only on the ratio L/ω, then the whole
left-hand side is a function of only one parameter, L/ω, that is:

F

(
L

ω

)
= π(n + α)

ω
. (1.85)

This relation represents the so-called Duvall’s law [100]. It means that a 2D dispersion
relation ω = ω(n, l) is reduced to the 1D relation between two ratios L/ω and
(n + α)/ω. With an appropriate choice of parameter α (e.g. 1.5) these ratios can
be easily calculated from a table of observed solar frequencies. An example of such
calculations, shown in Fig. 1.20, illustrates that the Duvall’s law holds quite well for
the observed solar modes. The short bottom branch that separates from the main
curve corresponds to f-modes.

1.4.7 Asymptotic Sound–Speed Inversion

The Duvall’s law demonstrates that the asymptotic theory provides a rather accurate
description of the observed solar p-modes. Thus, it can be used for solving the
inverse problem of helioseismology: determination of the internal properties from the
observed frequencies. Theoretically, the internal structure of the Sun is described by
the stellar evolution theory [101]. This theory calculates the thermodynamic structure
of the Sun during the evolution on the Main Sequence. The evolutionary model of the
current age ≈4.6 × 109 years, is called the standard solar model. Helioseismology
provides estimates of the interior properties, such as the sound–speed profiles, that
can be compared with the predictions of the standard model.

Our goal is to find corrections to a solar model from the observed frequency
differences between the Sun and the model using the asymptotic formula for the
Duvall’s law [102].
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Fig. 1.20 The observed
Duvall’s law relation for
modes of l = 0–250

We consider a small perturbation of the sound–speed, c → c + �c, and the
corresponding perturbation of frequency: ω → ω + �ω. Then, from (1.84) we
obtain:

R∫

rt

[
(ω +�ω)2

(c +�c)2
− L2

r2

]1/2

dr = π(n + α). (1.86)

Expanding this in terms of �c/c and �ω/ω and keeping only the first-order terms
we get:

�ω

ω

R∫

rt

dr

c
(
1 − L2c2/r2ω2

)1/2 =
R∫

rt

�c

c

dr

c
(
1 − L2c2/r2ω2

)1/2 . (1.87)

If we introduce a new variable:

T =
R∫

rt

dr

c
(
1 − L2c2/r2ω2

)1/2 , (1.88)

then

�ω

ω
= 1

T

R∫

rt

�c

c

dr

c
(
1 − L2c2/r2ω2

)1/2 . (1.89)

This equation has a simple physical interpretation: T is the travel time of acoustic
waves to travel along the acoustic ray path between the lower and upper turning
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points (Fig. 1.19). The right-hand side integral is an average of the sound–speed
perturbations along this ray path (compare with (1.80)).

Equation (1.89) can be reduced to the Abel integral equation by making a substi-
tution of variables. The new variables are:

x = ω2

L2 , (1.90)

y = c2

r2 , (1.91)

where x is a measured quantity, and y is associated with the sound–speed distribution
of an unperturbed solar model.

Then, we obtain an equation for x and y:

F(x) =
x∫

0

f (y)dy√
x − y

, (1.92)

where

F(x) = T
�ω

ω

1√
x
,

f (y) = �c

c

1

2y3/2
(

d log c
d log r + 1

) .

To solve for f (y) we multiply both sides of (1.19) by dx/
√

z − x and integrate
with respect to x from 0 to z:

z∫

0

F(x)dx√
z − x

=
z∫

0

dx√
z − x

x∫

0

f (y)dy√
x − y

=
x∫

0

f (y)dy

z∫

y

dx√
(z − x)(x − y)

.

Here we changed the order of integration.
Note that

z∫

y

dx√
(z − x)(x − y)

= π,
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then

z∫

0

F(x)dx√
z − x

= π

x∫

0

f (y)dy.

Differentiating with respect to x, we obtain the final solution:

f (y) = 1

π

d

dx

z∫

0

F(x)dx√
z − x

. (1.93)

Then, from f (y) we find the sound–speed correction �c/c.
This method based on linearization of the asymptotic Abel integral is called

“differential asymptotic sound–speed inversion” [102]. It provides estimates of the
sound–speed deviations from a reference solar model.

Alternatively, the sound–speed profile inside the Sun can be found from a solution
of the Abel obtained by differentiating the Duvall’s law equation (1.84) with respect
to variable y = L/ω. Then, this equation can be solved analytically. The solution
provides an implicit relationship between the solar radius and sound speed [103]:

ln(r/R) =
R/cs∫

r/c

d F

dy

(
y2 − r2

c2

)−1/2

dy, (1.94)

where cs is the sound speed at the solar surface r = R. The calculation of the
derivative, d F/dy, is essentially differentiation of a smooth function approximating
the Duvall’s law, that is differentiating π(n + α)/ω with respect to L/ω. Both these
quantities are obtained from the observed frequency table, ω(n, l).

The first inversion result using this approach was published by Christensen-
Dalsgaard et al. [102]. These technique can be generalized by including the Brunt–
Väisälä frequency term in the p-mode dispersion relation, and also taking into account
the frequency dependence of the phase shift, α [36]. The results show that this inver-
sion procedure provides a good agreement with the solar models, used for testing,
except the central core, where the asymptotic and Cowling approximations become
inaccurate.

Figure 1.21 shows the inversion results [104] for the p-mode frequencies measured
by Duvall et al. [105]. The deviation of the sound speed from a standard solar model
is about 1%. Later, the agreement between the solar model and the helioseismic
inversions was improved by using more precise opacity tables and including element
diffusion in the model calculations [101]. Also, a more accurate inversion method
was developed by using a perturbation theory based on a variational principle for the
normal mode frequencies (Sect. 1.5).
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Fig. 1.21 a Result of the asymptotic sound inversion (solid curve) [104] for the p-mode frequencies
[105]. It confirmed the standard solar model (model 1) [106] (dots). The large discrepancy in the
central region is due to inaccuracy of the data and the asymptotic approximation. b The relative
difference in the squared sound speed between the asymptotic inversions of the observed and
theoretical frequencies

1.4.8 Surface Gravity Waves (f-mode)

The surface gravity (f-mode) waves are similar in nature to the surface ocean waves.
They are driven by the buoyancy force, and exist because of the sharp density decrease
at the solar surface. These waves are missing in the JWKB solution. These waves
propagate at the surface boundary where Lagrangian pressure perturbation δP ∼ 0.

To investigate these waves we consider the oscillation equations in terms of δP
by making use of the relation between the Eulerian and Lagrangian variables (1.10):

P ′ = δP + gρξr .

The oscillation equations (1.35) and (1.37) in terms of ξr and δP are:

dξr
dr

− L2g

ω2r2 ξr +
(

1 − L2c2

ω2r2

)
δP

ρc2 = 0, (1.95)

dδP

dr
+ L2g

ω2r2 δP − gρ f

r
ξr = 0, (1.96)

where

f ≈ ω2r

g
− L2g

ω2r
. (1.97)

These equations have a peculiar solution:

δP = 0, f = 0.
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For this solution:

ω2 = Lg

R
= kh g (1.98)

the dispersion relation for the f-mode.
The eigenfunction equation:

dξr
dr

− L

r
ξr = 0 (1.99)

has a solution

ξr ∝ ekh(r−R) (1.100)

exponentially decaying with depth.
These waves are similar in nature to water waves which have the same dispersion

relation: ω2 = gkh . The f-mode waves are incompressible: ∇ · v = 0. These waves
are not sensitive to the sound speed but are sensitive to the density gradient at the
solar surface. They are used for measurements of the ‘seismic radius’ of the Sun.

1.4.9 The Seismic Radius

The frequencies of f-modes are:

ω2 = gkh ≡ G M

R2

L

R
≡ L

G M

R3 . (1.101)

If the frequencies are determined in observations for given l, then we can define the
‘seismic radius’, R, as

R =
(

LG M

ω2

)1/3

. (1.102)

The procedure of measuring the solar seismic radius is simple [107]. The lower
curve in Fig. 1.22a shows the relative difference between the f-mode frequencies of
l = 88–250 calculated for a standard solar model (model S) and the frequencies
obtained from the SOHO/MDI observations. This difference shows that the model
frequencies are systematically, by ≈6.6×10−4, lower than the observed frequencies.
Then from (1.101):

�R

R
= −2

3

�ν

ν
≈ 4.4 × 10−4, (1.103)

This means that the seismic radius is approximately equal to 695.68 Mm, which
is about 0.3 Mm less than the standard radius, 695.99 Mm, used for calibrating the
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Fig. 1.22 a Relative differences between the f-mode frequencies of l = 88–250 computed for a
standard solar model (model S) and the observed frequencies. The ‘seismic model’ frequencies are
obtained by scaling the frequencies of model S with factor 1.00066, which corresponds to scaling
down the model radius with (1.00066)2/3 ≈ 1.00044. The error bars are 3σ error estimates of
the observed frequencies. b Density as a function of radius near the surface for the standard and
seismic models. The star indicates the photospheric radius. The diamond shows the seismic radius,
695.68 Mm

model calculation. This radius is usually measured astrometrically as a position of
the inflection point in the solar limb profile. However, in the model calculations it
is considered as a radius where the optical depth of continuum radiation is equal 1.
The difference between this radius and the radius of the inflection point can explain
the discrepancy between the model and seismic radius.

Figure 1.22b illustrates the density profiles in the standard solar model (model S
[101]) and a ‘seismic’ model, calibrated to the seismic radius. The f-mode frequencies
of the seismic model match the observations.

Since the f-mode frequencies provide an accurate estimate of the seismic radius,
then it is interesting to investigate the variations of the solar radius during the solar
activity cycle, which are important for understanding physical mechanisms of solar
variability (e.g. [108]). Figure 1.23 shows the f-mode frequency variations during the
solar cycle 23, in 1997–2004, relative to the f-mode frequencies observed in 1996
during the solar minimum [109].

The results show a systematic increase of the f-mode frequency with the increased
solar activity, which means a decrease of the seismic radius. However, the variations
of the f-mode frequencies are not constant as this is expected from (1.103) for a
simple homologous change of the solar structure. A detailed investigation of these
variations showed that the frequency dependence can be explained if the variations
of the solar structure are not homologous and if the deeper subsurface layers expand
but the shallower layers shrink with the increased solar activity [109, 110].
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Fig. 1.23 Average relative
frequency differences for
f-mode 〈δν/ν〉 as a function
of 〈ν〉 , averaged frequencies
binned every 20μHz. The
reference year is 1996
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1.5 General Helioseismic Inverse Problem

In the asymptotic (high-frequency or short-wavelength) approximation (1.84), the
oscillation frequencies depend only on the sound–speed profile. This dependence
is expressed in terms of the Abel integral equation (1.89), which can be solved
analytically.

In a general case, the relation between the frequencies and internal properties is
more complicated, the frequencies depend not only on the sound speed, but also
on other internal properties, and there is no analytical solution. Generally, the fre-
quencies determined from the oscillation equations (1.35) and (1.37) depend on the
density, ρ(r), the pressure, P(r), and the adiabatic exponent, γ (r). However, ρ and
P are not independent and related to each other through the hydrostatic equation:

d P

dr
= −gρ, (1.104)

where g = Gm/r2, m = 4π
∫ r

0 ρr ′2dr ′. Therefore, only two thermodynamic
(hydrostatic) properties of the Sun are independent, e.g. pairs of (ρ, γ ), (P, γ ), or
their combinations: (P/ρ, γ ), (c2, γ ), (c2, ρ) etc.

The general inverse problem of helioseismology is formulated in terms of small
corrections to the standard solar model because the differences between the Sun and
the standard model are typically 1% or less. When necessary the corrections can be
applied repeatedly using an iterative procedure.
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1.5.1 Variational Principle

We consider the oscillation equations as a formal operator equation in terms of the
vector displacement, ξ:

ω2ξ = L(ξ), (1.105)

where L in the general case is an integro-differential operator. If we multiply this
equation by ξ∗ and integrate over the mass of the Sun, we get:

ω2
∫

V

ρξ∗ · ξdV =
∫

V

ξ∗ · LξρdV, (1.106)

where ρ is the model density, V is the solar volume.
Then, the oscillation frequencies can be determined as a ratio of two integrals:

ω2 =
∫

V ξ∗ · LξρdV∫
V ρξ∗ · ξdV

. (1.107)

The frequencies are expressed in terms of eigenfunctions ξ and the solar properties
represented by coefficients of the operator L.For small perturbations of solar parame-
ters the frequency change will depend on these perturbations and the corresponding
perturbations of the eigenfunctions, e.g.

δω2 = �[δρ, δγ, δξ ]. (1.108)

The variational principle states that the perturbations of the eigenfunctions consti-
tute second-order corrections, that is, to the first-order approximation the frequency
variations depend only on variations of the model properties:

δω2 ≈ �[δρ, δγ ]. (1.109)

The variational principle allows us to neglect the perturbation of the eigenfunc-
tions in the first-order perturbation theory. This was first established by Rayleigh.
Thus, (1.107) is called the Rayleigh’s Quotient, and the variational principle is called
the Rayleigh’s Principle. The original formulation of this principle is: for an oscil-
latory system the kinetic energy averaged over a period is equal to the averaged
potential energy. In our case, the left-hand side of (1.106) is proportional to the mean
kinetic energy, and the right-hand side is proportional to the potential energy of solar
oscillations.

1.5.2 Perturbation Theory

We consider a small perturbation of operator L caused by variations of the solar
structure properties:
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L(ξ) = L0(ξ)+ L1(ξ).

Then, the corresponding frequency perturbations are determined from the following
equation:

δω2 =
∫

V ξ∗ · L1ξρdV∫
V ρξ∗ · ξdV

,

or

δω

ω
= 1

2ω0 I

∫

V

ξ∗ · L1ξρdV , (1.110)

where

I =
∫

V

ρξ∗ · ξdV (1.111)

is so-called mode inertia or mode mass. The mode energy is E = Iω2
0a2, where a

is the amplitude of the surface displacement. The mode eigenfunctions are usually
normalized such that ξr (R) = 1.

Using explicit formulations for operator L1, equation (1.110) can be reduced to a
system of integral equations for a chosen pair of independent variables [111–114],e.g.
for (ρ, γ )

δω(n,l)

ω(n,l)
=

R∫

0

K (n,l)
ρ,γ

δρ

ρ
dr +

R∫

0

K (n,l)
γ,ρ

δγ

γ
dr, (1.112)

where K (n,l)
ρ,γ (r) and K (n,l)

γ,ρ (r) are sensitivity (or ‘seismic’) kernels. They are calcu-
lated using the initial solar model parameters, ρ0, P0, γ, and the oscillation eigen-
functions for these model, ξ .

1.5.3 Kernel Transformations

The sensitivity kernels for various pairs of solar parameters can be obtained by using
the relations among these parameters, which follows from the equations of solar
structure(‘stellar evolution theory’).

A general procedure for calculating the sensitivity kernels developed by Koso-
vichev [114] can be illustrated in an operator form. Consider two pairs of solar
variables, X and Y , e.g.
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X =
(
δρ

ρ
,
δγ

γ

)
; Y =

(
δu

u
,
δY

Y

)
,

where u = P/ρY is the helium abundance.
The linearized structure equations (the hydrostatic equilibrium equation and the

equation of state) that relate these variables can be written symbolically:

AX = Y . (1.113)

Let KX and KY be the sensitivity kernels for X and Y , then the frequency per-
turbation is:

δω

ω
=

R∫

0

K X · Xdr ≡ 〈K X · X〉, (1.114)

where 〈·〉 denotes the inner product. Similarly,

δω

ω
= 〈K Y · Y 〉. (1.115)

Then from (1.114) and (1.115) we obtain the following relation:

〈K Y · Y 〉 = 〈K Y · AX〉 = 〈A∗ K Y · X〉, (1.116)

where A∗ is an adjoint operator. This operator is adjoint to the stellar structure
operator, A. The second part of (1.116) represent a formal definition of this operator.

From (1.114) and (1.116) we get:

〈A∗ K Y · X〉 = 〈K X · X〉.
This equation is valid for any X only if

A∗ K Y = K X . (1.117)

This means that the equation for the sensitivity kernels is adjoint to the stellar structure
equations. The explicit formulation of the adjoint equations for the sensitivity kernels
for various pairs of variables is given in [114].

Examples of the sensitivity kernels for solar properties are shown in Fig. 1.24.
Figure 1.25 illustrates the difference in sensitivities of the p- and g-modes. The fre-
quencies of solar p-modes are mostly sensitive to properties of the outer layers of the
Sun while the frequencies of g-modes have the greatest sensitivity to the parameters
of the solar core.
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Fig. 1.24 Sensitivity kernels
for the acoustic mode of the
angular degree, l = 10, and
the radial order, n = 6. Kρ,γ
is the kernel for density, ρ, at
constant adiabatic exponent,
γ ; Kc2,ρ is the kernel for the
squared sound speed, c2, at
constant ρ; Ku,Y is the
kernel for function u, the
ratio pressure, p, to density
at constant helium
abundance, Y ; and K A∗,γ is
the kernel for the parameter
of convective stability,
A∗ = r N 2/g, at constant γ
Fig. 1.25 Sensitivity kernels
for p- and g-modes for
u = P/ρ and helium
abundance Y

1.5.4 Solution of Inverse Problem

The variational formulation provides us with a system integral equations (1.112) for
a set of observed mode frequencies. Typically, the number of observed frequencies,
N � 2000.Thus, we have a problem of determining two functions from this finite set
of measurements. In general, it is impossible to determine these functions precisely.
We can always find some rapidly oscillating functions, f (r), such that being added
to the unknowns, δρ/ρ and δγ /γ, do not change the values of the integrals, e.g.

R∫

0

K (n,l)
ρ,γ (r) f (r)dr = 0.

Such problems without a unique solution are called “ill-posed”. The general
approach is to find a smooth solution that satisfies the integral equations (1.112)
by applying some smoothness constraints to the unknown functions. This is called a
regularization procedure.
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There are two basic methods for solution of the helioseismic inverse problem:

1. Optimally Localized Averages (OLA) method (Backus–Gilbert method) [115];
2. Regularized Least-Squares (RLS) method (Tikhonov method) [116].

1.5.5 Optimally Localized Averages Method

The idea of the OLA method is to find a linear combination of data such as the
corresponding linear combination of the sensitivity kernels for one unknown has an
isolated peak at a given radial point, r0, (resembling a δ-function), and the combina-
tion for the other unknown is close to zero. Then, this linear combination provides
an estimate for the first unknown at r0.

Indeed, consider a linear combination of (1.112) with some unknown coefficient
a(n,l):
∑

a(n,l)
δω(n,l)

ω(n,l)
=

R∫

0

∑
a(n,l)K (n,l)

ρ,γ

δρ

ρ
dr +

R∫

0

∑
a(n,l)K (n,l)

γ,ρ

δγ

γ
dr. (1.118)

If in the first term the linear combination of the kernels is close to a δ-function at
r = r0, that is

∑
a(n,l)K (n,l)

ρ,γ (r) � δ(r − r0), (1.119)

and the linear combination in the second term vanishes:
∑

a(n,l)K (n,l)
γ,ρ (r) � 0, (1.120)

then (1.118) gives an estimate of the density perturbation, δρ/ρ, at r = r0 :

∑
a(n,l)

δω(n,l)

ω(n,l)
≈

R∫

0

δ(r − r0)
δρ

ρ
dr =

(
δρ

ρ

)
r0

. (1.121)

Of course, the coefficients, a(n,l), of (1.121) must be calculated from conditions
(1.119) and (1.120) for various target radii r0.

The functions,
∑

a(n,l)K (n,l)
ρ,γ (r) ≡ A(r0, r), (1.122)

∑
a(n,l)K (n,l)

γ,ρ (r) ≡ B(r0, r), (1.123)

are called the averaging kernels. They play a fundamental role in the helioseismic
inverse theory for determining the resolving power of helioseismic data.
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Fig. 1.26 A sample of the
optimally localized
averaging kernels for the
structure function, u, the
ratio of pressure, P, to
density, ρ, u = P/ρ. The
second, eliminated,
parameter in these kernels is
the helium abundance, Y

The coefficients, an,l , are determined by minimizing a quadratic form:

M(r0, A, α, β) =
R∫

0

J (r0, r) [A(r0, r)]
2 dr

+ β

R∫

0

[B(r0, r)]
2 dr + α

∑
i, j

En,l;n′,l ′a
n,lan′,l ′ ,

(1.124)

where function J (r0, r) = 12(r − r0)
2 provides a localization of the averaging

kernels A(r, r0) at r = r0, En,l;n′,l ′ is a covariance matrix of observational errors,
α and β are regularization parameters. The first integral in (1.124) represents the
Backus–Gilbert criterion of localization for A(r0, r); the second term minimizes
the contribution from B(r0, r), thus, effectively eliminating the second unknown
function (δγ /γ in this case); and the last term minimizes the errors. A practical
minimization algorithm is presented in [114]. An example of the averaging kernels
is shown in Fig. 1.26.

1.5.6 Inversion Results for Solar Structure

As an example, consider the results of inversion of the recent data obtained from
the MDI instrument on board the SOHO space observatory. The data represent 2176
frequencies of solar oscillations of the angular degree, l, from 0 to 250. These fre-
quencies were obtained by fitting peaks in the oscillation power spectra from a
360-day observing run, between May 1, 1996 and April 25, 1997.

Figure 1.27 shows the relative frequency difference, δω/ω, between the observed
frequencies and the corresponding frequencies calculated for the standard model
[101]. The frequency difference is scaled with a factor Q ≡ I (ω)/I0(ω), where
I (ω) is the mode inertia, and I0(ω) is the mode inertia of radial modes (l = 0),
calculated at the same frequency.
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Fig. 1.27 The relative
frequency difference, scaled
with the relative mode inertia
factor, Q = I/I0 (1.111),
between the Sun and the
standard solar model

(δ
ω

/ω
) Q

ω/2π (mHz)

This scaled frequency difference depends mainly on the frequency alone meaning
that most of the difference between the Sun and the reference solar model is in
the near-surface layers. Physically, this follows from the fact that the p-modes of
different l behave similarly near the surface where they propagate almost vertically.
This behavior is illustrated by the p-mode ray paths in Fig. 1.19a, which become
almost radial near the surface. In the inversion procedure, this frequency dependence
is eliminated by adding an additional “surface term” in (1.112) [114]. However, there
is also a significant scatter along the general frequency trend. This scatter is due to the
variations of the structure in the deep interior, and it is the basic task of the inversion
methods to uncover the variations.

First, we test the inversion procedure by considering the frequency difference
for two solar models and trying to recover the differences between model proper-
ties. Results of the test inversion (Fig. 1.28) show good agreement with the actual
differences. However, the sharp variations, like a peak in the parameter of convective
stability, A∗ ≡ r N 2/g, at the base of the convection zone, are smoothed. Also, the
inner 5% of the Sun and the subsurface layers (outer 2–3%) are not resolved.

Then, we apply this procedure to the real solar data. The results (Fig. 1.29) show
that the differences between the inferred structure and the reference solar model
(model S) are quite small, generally less than 1%. The small differences provide a
justification for the linearization procedure, based on the variational principle. This
also means that the modern standard model of the Sun [101] provides an accurate
description of the solar properties compared to the earlier solar model [106], used
for the asymptotic inversions(Fig. 1.21). A significant improvement in the solar mod-
eling was achieved by using more accurate radiative opacity data and by including
the effects of gravitational settling of heavy elements and element diffusion. How-
ever, recent spectroscopic estimates of the heavy element abundance on the Sun,
based on radiative hydrodynamics simulations of solar convection, indicated that the
heavy element abundance on the Sun may be lower than the value used in the standard
model [117]. The solar model with a low heavy element abundance do not
agree with the helioseismology measurements (e.g. [118]). This problem in the
solar modeling has not been resolved. Thus, the helioseismic inferences of the solar
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Fig. 1.28 The results of test inversions (points with the error bars, connected with dashed curves)
of frequency differences between two solar models for the squared sound speed, c2, the adiabatic
exponent, γ, the density, ρ, and the parameter of convective stability, A∗. The solid curves show the
actual differences between the two models. Random Gaussian noise was added to the frequencies
of a test solar model. The vertical bars show the formal error estimates, the horizontal bars show
the characteristic width of the localized averaging kernels. The central points of the averages are
plotted at the centers of gravity of the averaging kernels

Fig. 1.29 The relative differences between the Sun and the standard solar model [101] in the squared
sound speed, c2, the adiabatic exponent, γ, the density, ρ, and the parameter of convective stability,
A∗, inferred from the solar frequencies determined from the 360-day series of SOHO/MDI data

structure lead to better understanding of the structure and evolution of the star, and
have important applications in other fields of astrophysics.
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The prominent peak of the squared sound speed, δc2/c2, at the base of the con-
vection zone, r/R ≈ 0.7, indicates on additional mixing which may be caused by
rotational shear flows or by convective overshoot. The variation in the sound speed
in the energy-generating core at r/R < 0.2 might be also caused by a partial mixing.

The monotonic decrease of the adiabatic exponent, γ, in the core was recently
explained by the relativistic corrections to the equation of state [119]. Near surface
variations of γ, in the zones of ionization of helium and hydrogen, and below these
zones, are most likely caused by deficiencies in the theoretical models of the weakly
coupled plasma employed in the equation of state calculations [120].

The monotonic decrease of the squared sound speed variation in the convection
zone (r/R > 0.7) is partly due to an error in the solar seismic radius used to
calibrate the standard model [107], and partly due to the inaccurate description of the
subsurface layers by the standard solar model, based on the mixing-length convection
theory.

1.5.7 Regularized Least-Squares Method

The Regularized Least-Squares (RLS) method [116] is based on minimization of the
quantity

E ≡
∑
n,l

1

σ 2
n,l

⎡
⎣δω(n,l)
ω(n,l)

−
R∫

0

(
K (n,l)
( f,g)

δ f

f
+ K (n,l)

(g, f )
δg

g

)
dr

⎤
⎦

2

+
R∫

0

[
α1

(
L1
δ f

f

)2

+ α2

(
L2
δg

g

)2
]

dr, (1.125)

in which the unknown structure correction functions, δ f / f and δg/g, are both rep-
resented by piece-wise linear functions or by cubic splines. The second integral
specifies smoothness constraints for the unknown functions, in which L1 and L2 are
linear differential operators, e.g. L1,2 = d2/d2r; σi are error estimates of the relative
frequency differences.

In this inversion method, the estimates of the structure corrections are, once again,
linear combinations of the frequency differences obtained from observations, and cor-
responding averaging kernels exist too. However, unlike the OLA kernels A(r0; r),
the RLS averaging kernels may have negative sidelobes and significant peaks near the
surface, thus making interpretation of the inversion results to some extent ambigu-
ous. Nevertheless, it works well in most cases, and may provide a higher resolution
compared to the OLA method.
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1.5.8 Inversions for Solar Rotation

The eigenfrequencies of a spherically-symmetrical static star are degenerate with
respect to the azimuthal number m. Rotation breaks the symmetry and splits each
mode of radial order, n, and angular degree, l, into (2l + 1) components of m =
−l, . . . , l (mode multiplets). The rotational frequency splitting can be computed
using a more general variational principle derived by Lynden-Bell and Ostriker [121].
From this variational principle, one can obtain mode frequencies ωnlm relative to the
degenerate frequency ωnl of the non-rotating star:

�ωnlm ≡ ωnlm − ωnl = 1

Inl

∫

V

[
mξ · ξ∗ + ie�(ξ × ξ∗)

]
�ρdV, (1.126)

where e� is the unit vector defining the rotation axis, and� = �(r, θ) is the angular
velocity which is a function of radius r and co-latitude θ, and Inl is the mode inertia.

Equation (1.126) can be rewritten as a 2D integral equation for �(r, θ) :

�ωnlm =
R∫

0

π∫

0

K (�)
nlm(r, θ)�(r, θ)dθdr. (1.127)

where K (�)
nlm(r, θ) represent the rotational splitting kernels:

K (�)
nlm(r, θ) = m

Inl
4πρr2

{
(ξ2

nl − 2ξnlηnl)(P
m
l )

2 + η2
nl

[(
d Pm

l

dθ

)2

− 2Pm
l

d Pm
l

dθ

cos θ

sin θ
+ m2

sin2 θ
(Pm

l )
2
]}

sin θ. (1.128)

Here ξnl and ηnl are the radial and horizontal components of eigenfunctions of the
mean spherically symmetric structure of the Sun, Pm

l (θ) is an associated normalized
Legendre function (

∫ π
0 (P

m
l )

2 sin θdθ = 1). The kernels are symmetric relative to
the equator, θ = π/2. Therefore, the frequency splittings are sensitive only to the
symmetric component of rotation in the first approximation. The non-symmetric
component can, in principle, be determined from the second-order correction to the
frequency splitting, or from local helioseismic techniques, such as time–distance
seismology.

For a given set of observed frequency splitting, �ωnlm, (1.127) constitutes a 2D
linear inverse problem for the angular velocity,�(r, θ), which can be solved by the
OLA or RLS techniques.
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(a) (b)

Fig. 1.30 Contour lines of the rotation rate (in nHz) inside the Sun obtained by inverting the
rotational frequency splittings from a 144-day observing run from SOHO MDI by the RLS and
SOLA methods. The shaded areas are the areas where the localized averaging kernels substantially
deviate from the target positions

1.5.9 Results for Solar Rotation

As an example, we present the inversion results for solar rotation obtained from
SOHO data. The frequency splitting data were obtained from the 144-day MDI time
series by Schou for j = 1, . . . , 36 and 1 ≤ l ≤ 250 [122]. The total number of
measurements in this data set was M = 37366.

Figure 1.30 shows results of inversion of the SOI-MDI data by the two methods.
The results are generally in good agreement in most of the area where good averaging
kernels were obtained. However, the results differ in the high-latitude region. In
particular, a prominent feature of the RLS inversion at coordinates (0.2, 0.95) in
Fig. 1.30a, which can be interpreted as a ‘polar jet’, is barely visible in Fig. 1.30b,
showing the OLA inversion of the same data. Therefore, obtaining reliable inversion
results in this region and also in the shaded area is one of the main current goals
of helioseismology. This can be achieved by obtaining more accurate measurements
of rotational frequency splitting and improving inversion techniques. Of course, the
radical improvement can be made by observing the polar regions of the Sun. These
measurements can be done by using spacecraft with an orbit highly inclined to the
ecliptic plane, such as a proposed Solar Polar Imager (SPI) and POLARIS missions
[123].

The most characteristic feature of solar rotation is the differential rotation of the
convection zone, which occupies the ourter 30% of the solar radius. While the radia-
tive core rotates almost uniformly, the equatorial regions of the convection zone
rotate significantly faster than the polar regions. The main interest in understanding
the role of the Sun’s internal rotation is the dynamo process of generation of solar
magnetic fields and the origin of the 11-year sunspot cycle. The results of these
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Fig. 1.31 The solar rotation
rate as a function of radius at
three latitudes. The
horizontal lines indicate the
rotation rate of the surface
magnetic flux at the end of
solar cycle 22 (“old magnetic
flux”) and at the beginning of
cycle 23 (“new magnetic
flux”) [126]

measurements (Fig. 1.31a) reveal two radial shear layers at the bottom of the convec-
tion zone
(so-called tachocline) and in the upper convective boundary layer. A common
assumption is that the solar dynamo operates in the tachocline area (interface dynamo)
where it is easier to explain storage of magnetic flux than in the upper convection
zone because of the flux buoyancy. However, there are theoretical and observational
difficulties with this concept. First, the magnetic field in the tachocline must be
quite strong, ∼60–160 kG, to sustain the action of the Coriolis force transporting
the emerging flux tubes into high-latitude regions [124]. The magnetic energy of
such field is above the equipartition level of the turbulent energy. Second, the back-
reaction such strong field should suppress turbulent motions affecting the Reynolds
stresses. Since these turbulent stresses support the differential rotation one should
expect significant changes in the rotation rate in the tachocline. However, no sig-
nificant variations with the 11-year solar cycle are detected. Third, magnetic fields
often tend to emerge in compact regions on the solar surface during long periods
lasting several solar rotations. This effect is known as “complexes of activity” or
“active longitudes”. However, the helioseismology observations show that the rota-
tion rate of the solar tachocline is significantly lower than the surface rotation rate.
Thus, magnetic flux emerging from the tachocline should be spread over longitudes
(with new flux lagging the previously emerged flux) whether it remains connected to
the dynamo region or disconnected. It is well-known that sunspots rotate faster than
surrounding plasma. This means that the magnetic field of sunspots is anchored in
subsurface layers. Observations show that the rotation rate of magnetic flux matches
the internal plasma rotation in the upper shear layer (Fig. 1.31) indicating that this
layer is playing an important role in the solar dynamo, and causing a shift in the
dynamo paradigm [125].

Variations in solar rotation clearly related to the 11-year sunspot cycle are observed
in the upper convection zone. These are so-called “torsional oscillations” which rep-
resent bands of slower and faster rotation, migrating towards the equator as the
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Fig. 1.32 a Migration of the
subsurface zonal flows with
latitude during solar cycle 23
from SOHO/MDI data [127].
Red shows zones of faster
rotation, green and blue
show slower rotation. b
Variations of the zonal flows
with depth and latitude
during the first 4 years after
the solar minimum. [128]
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solar cycle progresses (Fig. 1.32). The torsional oscillations were first discovered
on the Sun’s surface [129], and then were found in the upper convection zone by
helioseismology [130, 131]. The depth of these evolving zonal flows is not yet estab-
lished. However, there are indications that they may be persistent through most of
the convection zone, at least, at high latitudes [128]. The physical mechanism is
not understood. Nevertheless, it is clear that these zonal flows are closely related to
the internal dynamo mechanism that produces toroidal magnetic field. On the solar
surface, this field forms sunspots and active regions which tend to appear in the
areas of shear flows at the outer (relative to the equator) part of the faster bands.
Thus, the torsional flows are an important key to understanding the solar dynamo,
and one of the challenges is to establish their precise depth and detect corresponding
variations in the thermodynamic structure of the convection zone. Recent modeling
of the torsional oscillations by the Lorentz force feedback on differential rotation
showed that the poleward-propagating high-latitude branch of the torsional oscilla-
tions can be explained as a response of the coupled differential rotation/meridional
flow system to periodic forcing in midlatitudes of either mechanical (Lorentz force)
or thermal nature [132]. However, the main equatorward-propagating branches can-
not be explained by the Lorentz force, but maybe driven by thermal perturbations
caused by magnetic field [133]. It is intriguing that starting from 2002, during the
solar maximum, the helioseismology observations show new branches of “torsional
oscillations” migrating from about 45◦ latitude towards the equator (Fig. 1.32a). They
indicate the start of the next solar cycle, number 24, in the interior, and are obviously
related to magnetic processes inside the Sun. However, magnetic field of the new
cycle appeared on the surface only in 2008.
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1.6 Local-area Helioseismology

1.6.1 Basic Principles

In the previous sections we discussed methods of global helioseismology, which are
based on inversions of accurately measured frequencies and frequency splitting of
normal oscillation modes of the Sun. The frequencies are measured from long time
series of observations of the Doppler velocity of the solar disk. These time series are
much longer than the mode lifetimes, typically, two or three 36-day-long ‘GONG
months’, that is 72 or 108 days. The long time series allow us to resolve individual
mode peaks in the power spectrum, and accurately measure the frequencies and other
parameters of these modes. However, because of the long integration times global
helioseismology cannot capture the fast evolution of magnetic activity in subsur-
face layers of the Sun. Also, it provides only information about the axisymmetrical
structure of the Sun and the differential rotation (zonal flows).

Local helioseismology attempts to determine the subsurface structure and dynam-
ics of the Sun in local areas by analyzing local characteristics of solar oscillations,
such as frequency and phase shifts and variations in wave travel times. This is a
relatively new and rapidly growing field. It takes advantage of high-resolution obser-
vations of solar oscillations, currently available from the GONG+ helioseismology
network and the space mission SOHO, and are anticipated from the SDO mission.

1.6.2 Ring-diagram Analysis

Local helioseismology was pioneered by Gough and Toomre [46] who first pro-
posed to measure oscillation frequencies of solar modes as a function of the
wavevector,ω(k), (the dispersion relation) in local areas, and use these measure-
ments for diagnostics of the local flows and thermodynamic properties. They noticed
that subsurface variations of temperature cause change in the frequencies, and that
subsurface flows result in distortion of the dispersion relation because of the advec-
tion effect.

This idea was implemented by Hill [47] in the form of a ring-diagram analysis. The
name of this technique comes from the ring appearance of the 3D dispersion relation,
ω = ω(kx , ky), in the (kx , ky) plane, where kx and ky are x- and y-components of
the wave vector, k (Fig. 1.33). The ridges in the vertical cuts represent the same mode
ridges as in Fig. 1.3, corresponding to the normal oscillation modes of different radial
orders n.

In the presence of a horizontal flow field, U = (Ux ,Uy) the dispersion relation
has the form:

ω = ω0(k)+ k · U ≡ ω0 + (Ux kx + Uyky), (1.129)
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Fig. 1.33 Three-dimensional
power spectrum of solar
oscillations, P(kx , ky, ω).

The vertical panels with blue
background show the mode
ridge structure similar to the
global oscillation spectrum
shown in Fig. 1.3. The
horizontal cut with
transparent background
shows the ring structure of
the power spectrum at a
given frequency(courtesy of
Amara Graps)

whereω0(k) is the symmetrical part of the dispersion relation in the (kx , ky)-plane. It
depends only on the magnitude of the wave vector, k. The power spectrum, P(ω, k),
for each k is fitted with a Lorentzian profile [134]:

P(ω, k) = A

(ω − ω0 + kxUx + kyUy)2 + �2 + b0

k3 , (1.130)

where A, ω0, �, and b0 are respectively the amplitude, central frequency, line width
and a background noise parameter.

In some realizations, the fitting formula includes the line asymmetry (Sect. 1.3).
Also, the central frequency can be fitted by assuming a power-law relation:ω0 = ck p,

where c and p are constants [47, 135]. This relationship is valid for a polytropic
adiabatic stratification, where p = 1/2 [46]. If the flow velocity changes with depth
then the parameter, U, represent a velocity, averaged with the depth with a weighting
factor proportional to the kinetic energy density of the waves, ρξ · ξ [136]:

U =
∫

u(z)ρξ · ξdz∫
ρξ · ξdz

, (1.131)

where ξ(z) = (ξr , ξh) is the wave amplitude, given by the mode displacement eigen-
functions (1.15). The integral is taken over the entire extent of the solar envelope.
Equation (1.131) is solved by the RLS or OLA techniques (Sect. 1.5).

The ring-diagram method has provided important results about the structure and
evolution of large-scale and meridional flows and dynamics of active regions [127,
134, 137–139]. In particular, large-scale patterns of subsurface flows converging
around magnetic active regions were discovered [138]. These flows cause variations
of the mean meridional circulation with the solar cycle [134], which may affect
transport of magnetic flux of decaying active regions from low latitudes to the polar
regions, and thus change the duration and magnitude of the solar cycles [140].
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However, the ring-diagram technique in the present formulation has limitations in
terms of the spatial and temporal resolution and the depth coverage. The local oscilla-
tion power spectra are typically calculated for regions with the horizontal size cover-
ing 15 heliographic degrees (�180 Mm). This is significantly larger than the typical
size of supergranulation and active regions (�30 Mm). There have been attempts to
increase the resolution by doing the measurements in overlapping regions (so-called
“dense-packed diagrams”). However, since such measurements are not independent,
their resolution is unclear. The measurements of the power spectra calculated for
smaller regions (2–4◦ in size) increase the spatial resolution but decrease the depth
coverage [141].

1.6.3 Time–Distance Helioseismology (Solar Tomography)

Further developments of local seismology led to the idea to perform measurements of
local wave distortions in the time–distance space instead of the traditional frequency–
wavenumber Fourier space [48]. In this case, the wave distortions can be measured
as perturbations of wave travel times. However, because of the stochastic nature of
solar waves it is impossible to track individual wave fronts. Instead, it was suggested
to use a cross-covariance (time–distance) function that provides a statistical mea-
sure of the wave distortion. Indeed, by cross-correlating solar oscillation signals at
two points one may expect that the main contribution to this cross-correlation will
be from the waves traveling between these points along the acoustic ray paths [142,
143]. Thus, the cross-covariance function calculated for oscillation signals measured
at two points separated by a distance,�, for various time lags, τ, has a peak when the
time lag is equal to the travel time of acoustic waves between these points. Physically,
the cross-covariance function corresponds to the Green’s function of the wave equa-
tion, representing the wave signal from a point source. Of course, in reality, because
of the finite wavelength effects, non-uniform distribution of acoustic sources, and
complicated wave interaction with turbulence and magnetic fields the interpretation
of the travel-time measurements is extremely challenging. Various approximations
are used to relate the observed perturbations of the travel times to the internal prop-
erties such as sound–speed perturbations and flow velocities. We discuss the basic
principles and the current status of the time–distance helioseismology method in
Sect. 1.7.

1.6.4 Acoustic Holography and Imaging

The acoustic holography [144] and acoustic imaging [51] techniques are developed
on the principles of day-light imaging by collecting over large areas on the solar
surface coherent acoustic signals emitted from selected target points of the interior.
The idea is that the signals constructed this way contain information about objects
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located below the surface because of wave absorption or scattering at the target
points. The phases of individual signals are calculated by using the time–distance
relation, τ(�), for acoustic waves traveling along the ray paths. The constructed
signals, ψout,in(t), are calculated using the following relation [145]:

ψout,in(t) =
τ2∑
τ1

Wψ(�, t ± τ), (1.132)

where ψ(�, t + τ) is the azimuthal-averaged signal at a distance � from a target
point at time t ± τ(�). The summation variable τ is equally spaced in the interval
(τ1, τ2); and the weighting factor, W ∝ (sin �/τ 2)1/2, describes the geometrical
spreading of acoustic waves with distance. The positive sign in (1.132) corresponds
to ψout constructed with waves traveling outward from a target point (“egression
signal” [144]), while the negative sign provides ψin constructed with the incoming
waves (“ingression signal”).

The amplitude and phase of the constructed signals contain information about
subsurface perturbation. A practical approach to extract this is to cross-correlate the
outgoing and incoming signals [146, 147]:

C(t) =
∫
ψin(t

′)ψout(t
′ + t)dt ′, (1.133)

and then to measure time shifts of this function for various target positions rela-
tive to the corresponding quiet Sun values. These measurements correspond to the
travel-time variations obtained by time–distance helioseismology [148, 149]. Further
analysis of the travel-time variations is similar to the time–distance helioseismology
method [50]. The advantages and disadvantages of the time–distance helioseismol-
ogy and acoustic holography/imaging are not clear. Both approaches are being tested
using various types of artificial data and applied for measuring subsurface structures
and flows. Most of the current inferences of subsurface structures and flows have
been obtained using the time–distance approach [48, 50]. The time–distance helio-
seismology method, also called solar tomography is described in more detail in the
following section.

1.7 Solar Tomography

1.7.1 Time–distance Diagram

Solar acoustic waves (p-modes) are excited by turbulent convection near the solar
surface and travel through the interior with the speed of sound. Because the sound
speed increases with depth the waves are refracted and reappear on the surface at
some distance from the source. The wave propagation is illustrated in Fig. 1.34.
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Fig. 1.34 A cross-section
diagram through the solar
interior showing a sample of
wave paths inside the Sun

Waves excited at point A will reappear at the surface points B, C, D, E, F, and others
after propagating along the ray paths indicated by the curves connecting these points.

The basic idea of time–distance helioseismology, or helioseismic tomography, is
to measure the acoustic travel time between different points on the solar surface, and
then to use these measurements for inferring variations of wave-speed perturbations
and flow velocities in the interior by inversion [48]. This idea is similar to seismology
of Earth. However, unlike in Earth, the solar waves are generated stochastically by
numerous acoustic sources in a subsurface layer of turbulent convection.

Therefore, the wave travel time is determined from the cross-covariance function,
�(τ,�), of the oscillation signal, f (t, r) :

�(τ,�) =
T∫

0

f (t, r1) f ∗(t + τ, r2)dt, (1.134)

where � is the horizontal distance between two points with coordinates r1 and
r2, τ is the lag time, and T is the total time of the observations. The normalized
cross-covariance function is called cross-correlation. The time–distance analysis is
based on non-normalized cross-covariance. Because of the stochastic nature of solar
oscillations, function � must be averaged over some areas to achieve a good signal-
to-noise ratio sufficient for measuring the travel times. The oscillation signal, f (t, r),
is measured from the Doppler shift or intensity of a spectral line. A typical cross-
covariance function obtained from full-disk solar observations of the Doppler shift
shown in Fig. 1.35a displays a set of ridges. The ridges correspond to acoustic wave
packets traveling between two points on the surface directly through the interior or
with intermediate reflections (bounces) from the surface as illustrated in Fig. 1.34.

The waves originating at point A may reach point B directly (solid curve) forming
the first-bounce ridge, or after one bounce at point C (dashed curve) forming the
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(a) (b)

Fig. 1.35 The observational a and theoretical b cross-covariance functions (time–distance dia-
grams) as a function of distance on the solar surface, �, and the delay time, τ. The lowest set
of ridges (‘first bounce’) corresponds to acoustic waves propagated to the distance, �, without
additional reflections from the solar surface. The second from the bottom ridge (‘second bounce’)
is produced by the waves arriving to the same distance after one reflection from the surface, and the
third ridge (‘third bounce’) results from the waves arriving after two bounces from the surface. The
backward ridge at τ ≈ 250 min is a continuation of the second-bounce ridge due to the choice of
the angular distance range from 0 to 180◦ (that is, the counterclockwise distance ADF in Fig. 1.34
is substituted with the clockwise distance AF). Because of foreshortening close to the solar limb
the observational cross-covariance function covers only ∼110◦ of distance

second-bounce ridge, or after two bounces (dotted curve)—the third-bounce ridge
and so on. Because the sound speed is higher in the deeper layers the direct waves
arrive first, followed by the second-bounce and higher-bounce waves.

The cross-covariance function represents a time–distance diagram, or a solar
‘seismogram’. Fig. 1.36 shows the cross-covariance signal as a function of time for
the travel distance,�, of 30◦. It consists of three wave packets corresponding to the
first, second and third bounces. Ideally, like in Earth seismology, the seismogram can
be inverted to infer the structure and flows using a wave theory. However, in practice,
modeling the wave fronts is a computationally intensive task. Therefore, the analysis
is performed by measuring and inverting the phase and group travel times of the
wave packets employing various approximations, the most simple and powerful of
which is the ray-path approximation.

Generally, the observed solar oscillation signal corresponds to displacement or
pressure perturbation, and can be represented in terms of the normal modes eigen-
functions. Therefore, the cross-covariance function also can be expressed in terms
of the normal modes. In addition, it can be represented as a superposition of trav-
eling wave packets, as we show in the next subsection [50]. An example of the
theoretical cross-covariance function calculated using normal p-modes of the stan-
dard solar model is shown in Fig. 1.35b. This model reproduces the observational
cross-covariance function very well in the observed range of distances, from 0 to
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Fig. 1.36 The observed
cross-covariance signal as a
function of time at the
distance of 30◦

90◦. The theoretical model was calculated for larger distances than the correspond-
ing observational diagram in Fig. 1.35a, including points on the far side of the Sun,
which is not accessible for measurements. A backward propagating ridge originating
from the second-bounce ridge at 180◦ is a geometrical effect due to the choice of the
range of the angular distance from 0 to 180◦. In the theoretical diagram (Fig. 1.35b)
one can notice a very weak backward ridge between 30 and 70◦ and at 120 min. This
ridge is due to reflection from the boundary between the convection and radiative
zones. However, this signal has not been detected in observations.

1.7.2 Wave Travel Times

For simplicity we consider solar oscillation signals observed not far from the disk
center and describe these in terms of the radial displacement neglecting the horizontal
displacement. The general theory was developed by Nigam and Kosovichev [150].
In the simple case, the solar oscillation signal can be represented in terms of the
radial eigenfunctions (1.42):

f (t, r, θ, φ) =
∑
nlm

anlmξ
(n,l,m)
r (r, θ, φ) exp(iωnlmt + iφnlm), (1.135)

where n, l and m are the radial order, angular degree and angular order of a normal
mode respectively, ξnlm(r, θ, φ) is a mode eigenfunction in the spherical coordinates,
r, θ and φ, ωnlm is the eigenfrequency, and φnlm is an initial phase of the mode. Using
(1.135), we calculate the cross-covariance function, and express it as a superposition
of traveling wave packets. Such a representation is important for interpretation of
the time–distance data. A similar correspondence between the normal modes and the
wave packets has been discussed for surface oscillations in Earth’s seismology [151]
and also for ocean waves [152].
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To simplify the analysis, we consider the spherically symmetrical case. In this
case, the mode eigenfrequencies do not depend on the azimuthal order m. For a
radially stratified sphere, the eigenfunctions can be represented in terms of spherical
harmonics Ylm(θ, φ) (1.42):

ξ (n,l,m)r (r, θ, φ) = ξ (n,l)r (r)Ylm(θ, φ), (1.136)

where ξ (n,l)r (r) is the radial eigenfunction [153].
Using, the convolution theorem [154] we express the cross-covariance function

in terms of a Fourier intergral:

�(τ,�) =
∞∫

−∞
F(ω, r1)F

∗(ω, r2) exp(iωτ)dω, (1.137)

where F(ω, r) is Fourier transform of the oscillation signal f (t, r).
The oscillation signal is considered as band-limited and filtered to select a p-mode

frequency range using a Gaussian transfer function:

G(ω) = exp

[
−1

2

(
ω − ω0

δω

)2
]
, (1.138)

whereω is the cyclic frequency,ω0 is the central frequency and δω is the characteristic
bandwidth of the filter. The cross-covariance function in Fig. 1.35 displays three sets
of ridges which correspond to the first, second and third bounces of acoustic wave
packets from the surface.

The time series used in our analysis are considerably longer than the travel time
τ, therefore, we can neglect the effect of the window function, and represent F(ω, r)
in the form

F(ω, r, θ, φ) ≈ A
∑
nlm

ξ (n,l)r (r)Ylm(θ, φ)δ(ω − ωnl) exp

[
−1

2

(
ω − ω0

δω

)2
]
,

(1.139)
where δ(x) is the delta-function, ωnl are frequencies of the normal modes, and A
is the amplitude of the Gaussian envelope of the amplitude spectrum at ω = ω0. In
addition, we assume the normalization conditions: ξ (n,l)r (R) = 1, anl = AG(ωnl).

Then, the cross-covariance function is

�(τ,�) = A2
∑
nl

exp

[
−
(
ωnl − ω0

δω

)2

+ iωnlτ

]
l∑

m=−l

Ylm(θ1, φ1)Y
∗
lm(θ2, φ2),

(1.140)
where θ1, φ1 and θ2, φ2 are the spherical heliographic coordinates of the two obser-
vational points. The sum of the spherical function products is:



66 Alexander G. Kosovichev

l∑
m=−l

Ylm(θ1, φ1)Y
∗
lm(θ2, φ2) = αl Pl(cos�), (1.141)

where Pl(cos�) is the Legendre polynomial, � is the angular distance between
points 1 and 2 along the great circle on the sphere, cos� = cos θ1 cos θ2 +
sin θ1 sin θ2 cos(φ2 − φ1), and αl = √

4π/(2l + 1). Then, the cross-covariance
function is:

�(τ,�) ≈ A2
∑
nl

αl Pl(cos�) exp

[
−
(
ωnl − ω0

δω

)2

+ iωnlτ

]
. (1.142)

For large values of l�, but when � is small,

Pl(cos�) �
√

2

πL�
cos
(

L�− π

4

)
. (1.143)

Thus,

�(τ,�) = A2
∑
nl

2

L
√
�

exp

[
− (ωnl − ω0)

2

δω2

]
cos(ωnlτ) cos(L�). (1.144)

Now the double sum can be reduced to a convenient sum of integrals if we regroup
the modes so that the outer sum is over the ratio v = ωnl/L and the inner sum is
over ωnl .

According to the ray-path theory, the travel distance � of an acoustic wave is
determined by the ratio v, which represents the horizontal angular phase velocity
(v = ωnl/L ≡ (ωnl/kh)/r). Because of the band-limited nature of the function G,
only values of L which are close to L0 ≡ ω0/v contribute to the sum. We consider
the relation L vs ωnl as a continuous function along the mode ridges (Fig. 1.3), and
expand L near the central frequency ω0 :

L � L0 + ∂L

∂ωnl
(ωnl − ω0) = ω0

v
+ ωnl − ω0

u
, (1.145)

where u ≡ ∂ωnl/∂L . Furthermore,

cos(ωnl)τ ) cos(L�) = cos

[(
τ − �

u

)
ωnl +

(
1

u
− 1

v

)
�ω0

]
, (1.146)

and the other term is identical except that τ has been replaced with −τ (negative
time lag). The result is that the double sum in (1.144) becomes

�(τ,�) � A2
∑
v

2

L0
√
�

∑
ωnl

exp

[
− (ω − ω0)

2

δω2

]
cos

[(
±τ − �

u

)
+
(

1

u
− 1

v

)
�ω0

]
.

(1.147)
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The inner sum can be approximated by an integral, consideringωnl as a continuous
variable along the mode ridges:

∞∫

−∞
dω exp

[
− (ω − ω0)

2

δω2

]
cos

[(
τ − �

u

)
ω −

(
1

u
− 1

v

)
�ω0

]
=

√
πδω2 exp

[
−δω

2

4

(
τ − �

u

)2
]

cos

[
ω0

(
τ − �

v

)]
.

(1.148)

The integration limits reflect the fact that the amplitude function G(ω) is essen-
tially zero for very large and very small frequencies. Finally, the cross-covariance is
expressed in the following form [50]:

�(τ,�) = B
∑
v

cos
[
ω0
(
τ − τph

)]
exp

[
−δω

2

4

(
τ − τgr

)2]
, (1.149)

where B is constant, τph = �/v and τgr = �/u are the phase and group travel
times. Equation (1.149) has the form of a Gabor wavelet. The phase and group travel
times are measured by fitting individual terms of equation (1.149) to the observed
cross-covariance function using a least-squares technique.

1.7.3 Deep- and Surface-Focus Measurement Schemes

As we have pointed out the travel-time measurements require averaging of the cross-
covariance function in order to obtain a good signal-to-noise ratio. Two typical
schemes of the spatial averaging suggested by Duvall [155] are shown in Fig. 1.37.

For the so-called ‘surface-focusing’ scheme (Fig. 1.37a) the measured travel times
are mostly sensitive to the near surface condition at the central point where the ray
paths are focused. However, by measuring the travel times for several distances and
applying an inversion procedure it is possible to infer the distribution of the variations
of the wave speed and flow velocities with depth. The averaging also can be done in
such a way that the ‘focus’ point is located beneath the surface. An example of the
‘deep-focusing’ scheme is shown in Fig. 1.37b. In this case the travel times are more
sensitive to deep structures but still inversions are required for correct interpretation.

1.7.4 Sensitivity Kernels: Ray-path Approximation

The travel-time inversion procedures are based on theoretical relations between the
travel-time variations and interior properties constituting the forward problem of local
helioseismology. Similarly to global helioseismology, these relations are expressed
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Fig. 1.37 The regions of ray propagation (shaded areas) as a function of depth, z, and the radial
distance, �, from a point on the surface for two observing schemes: ‘surface focusing’ (a) and
‘deep focusing’ (b). The rays are also averaged over a circular regions on the surface, forming 3D
figures of revolution

in the form of linear integral equations with sensitivity kernels. Two basic types of
the sensitivity kernels have been used: ray-path kernels [50] and Born-approximation
kernels [156–158]. The ray-path kernels are based on a simple and generally robust
theoretical ray approximation, but they do not take into account finite wavelength
effects and thus are not sufficiently accurate for diagnostics of small-scale structures.
For reliable inferences it is important to use both these kernels.

In the ray approximation, the travel times are sensitive only to the perturbations
along the ray paths given by Hamilton’s equations (1.72). The variations of the phase
travel time obey the Fermat’s Principle:

δτ = 1

ω

∫

�

δkdr, (1.150)

where δk is the perturbation of the wave vector, k, due to the structural inhomo-
geneities and flows along the unperturbed ray path, �. Using the dispersion relation
for acoustic waves in the convection zone the travel-time variations can be expressed
in terms of the sound–speed, magnetic field strength and flow velocity.

The dispersion relation for magnetoacoustic waves in the convection zone is

(ω − k · U)2 = ω2
c + k2c2

f , (1.151)

where U is the flow velocity, ωc is the acoustic cut-off frequency,

c2
f = 1

2

(
c2 + c2

A +
√(

c2 + c2
A

)2 − 4c2(k · cA)2/k2

)
is the fast magnetoacoustic

speed, cA = B/
√

4πρ is the vector Alfvén velocity, B is the magnetic field strength,



1 Advances in Global and Local Helioseismology: An Introductory Review 69

c is the adiabatic sound speed, and ρ is the plasma density. If we assume that, in the
unperturbed state U = B = 0, then, to the first-order approximation

δτ = −
∫

�

[
(n · U)

c2 + δc

c
S +

(
δωc

ωc

)
ω2

c

ω2c2S
+ 1

2

(
c2

A

c2 − (k · cA)
2

k2c2

)
S

]
ds.

(1.152)
where n is a unit vector tangent to the ray, S = k/ω is the phase slowness.

Then, we separate the effects of flows and structural perturbations by measuring
the travel times of acoustic waves traveling in opposite directions along the same ray
path, and calculating the difference, τdiff and the mean, τmean, of these reciprocal
travel times:

δτdiff = −2
∫

�

(n · U)
c2 ds; (1.153)

δτmean = −
∫

�

[
δc

c
S +

(
δωc

ωc

)
ω2

c

ω2c2S
+ 1

2

(
c2

A

c2 − (k · cA)
2

k2c2

)
S

]
ds. (1.154)

anisotropy of the last term of equation (1.154) allows us to separate, at least partly,
the magnetic effects from the variations of the sound speed and the acoustic cut-off
frequency. The acoustic cut-off frequency, ωc may be perturbed by surface magnetic
fields and by temperature and density inhomogeneities. The effect of the cut-off
frequency variation depends strongly on the wave frequency, and, therefore, it results
in a frequency dependence in τmean.

In practice, the travel times are measured from the cross-covariance functions
between selected central points on the solar surface and surrounding quadrants sym-
metrical relative to the North, South, East and West directions. In each quadrant, the
travel times are averaged over narrow ranges of the travel distance,�.The travel times
of the northward-directed waves are subtracted from the times of the south-directed
waves to yield the time, τNS

diff , which is predominantly sensitive to subsurface north–
south flows. Similarly, the time differences, τEW

diff , between westward- and eastward
directed waves yields a measure of the east-ward flows. The time, τ oi

diff , between
the outward- and inward-directed waves, averaged over the full annuli, is mainly
sensitive to vertical flows and divergence of the horizontal flows. This represents a
cross-talk effect between the vertical flows and horizontal flows, which is difficult
to resolve when the vertical flows are weak [159].

Thus, the effects of flows and structural perturbations are separated from each
other by taking the difference and the mean of the reciprocal travel times:

δτdiff ≈ −2
∫

�

(nU)
c2 ds; (1.155)
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Fig. 1.38 Travel-time
sensitivity kernels in the first
Born approximation for
sound–speed variations as a
function of the horizontal, x,
and vertical, y, coordinates
for: a the first-bounce signal
for distance � = 6◦, b the
second-bounce signal for
� = 60◦. The solid curves
show the corresponding ray
paths at frequency ν = 3
mHz [162] (b)

(a)

δτmean ≈ −
∫

�

δw

c
Sds, (1.156)

where c is the adiabatic sound speed, n is a unit vector tangent to the ray, S = k/ω
is the phase slowness, δw is the local wave speed perturbation:

δw

c
= δc

c
+ 1

2

(
c2

A

c2 − (kcA)
2

k2c2

)
. (1.157)

Magnetic field causes anisotropy of the mean travel times, which allows us to sep-
arate, in principle, the magnetic effects from the variations of the sound speed (or
temperature). So far, only a combined effect of the magnetic fields and temperature
variations has been measured reliably.

1.7.5 Born Approximation

The development of a more accurate theory for the travel times, based on the Born
approximation is currently under way [156–158, 160, 161].

One unexpected feature of the single-source travel-time kernels calculated in the
Born approximation is that these kernels have zero value along the ray path (called
‘banana–doughnut kernels’). Examples of the Born kernels for the first and the second
bounces are shown in Fig. 1.38. The kernels are mostly sensitive to perturbations
within the first Fresnel zone.
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Fig. 1.39 Tests of the ray
and Born approximations:
travel times for smooth
spheres as functions of
sphere radius at half
maximum. The solid lines
are the numerical results. The
dashed curves are the Born
approximation travel times
and the dotted lines are the
first order ray approximation.
The left panel shows the two
perturbations of the relative
amplitude, A = ±0.05. The
right panel is for the cases
A = ±0.1 [160]

0 5 10

−100

−50

0

50

100

A=±0.05, Smooth Sphere

R (Mm)

dt
 (

s)
 

0 5 10

−200

−100

0

100

200

A=±0.1, Smooth Sphere

R (Mm)

Figure 1.39 shows the test results for both the ray and Born approximations for a
simple model of a smooth sphere in an uniform medium by comparing with precise
numerical results [160]. These results show that for typical perturbations in the solar
interior the Born approximation is sufficiently accurate, while the ray approximation
significantly overestimates the travel times for perturbations smaller than the size of
the first Fresnel zone. That means that the inversion results based on the ray theory
may underestimate the strength of the small-scale perturbations. The comparison of
the inversion results for sub-surface sound–speed structures beneath sunspots have
showed a very good agreement between the ray-paths and Born theories [158].

1.8 Inversion Results of Solar Acoustic Tomography

The results of test inversions (e.g. [50, 55, 159]) demonstrate an accurate recon-
struction of sound–speed variations and the horizontal components of subsurface
flows. However, vertical flows in deep layers are not resolved because of the pre-
dominantly horizontal propagation of the rays in these layers. The vertical velocities
are also systematically underestimated in the upper layers. When the vertical flow
is weak, e.g. such as in supergranulation, the vertical velocity is not estimated cor-
rectly, because the trave-time signal is dominated by the horizontal flow divergence.
In such situation, it is difficult to determine even the direction of the vertical flow [55].
Similarly, the sound–speed variations are underestimated in the deep layers and close
to the surface. These limitations of the solar tomography should be taken into account
in interpretation of the inversion results.

Here, I briefly present some examples of the local helioseismology inferences
obtained by inversion of acoustic travel times.



72 Alexander G. Kosovichev

.

(a) (b)

Fig. 1.40 The supergranulation horizontal flow velocity field (arrows) and the sound–speed per-
turbation (color background) at the depths of 1.4 Mm (a) and 5.0 Mm (b), as inferred from the
SOHO/MDI high-resolution data of 27 January 1996 [50]

1.8.1 Diagnostics of Supergranulation

The data used were for 8.5 h on 27 January, 1996 from the high resolution mode of
the MDI instrument. The results of inversion of these data are shown in Fig. 1.40 [50].
It has been found that, in the upper layers, 2–3 Mm deep, the horizontal flow is orga-
nized in supergranular cells, with outflows from the center of the supergranules. The
characteristic size of the cells is 20–30 Mm. Comparing with MDI magnetograms,
it was found that the cell boundaries coincide with the areas of enhanced magnetic
field. These results are consistent with the observations of supergranulation on the
solar surface. However, in the layers deeper than ∼5 Mm, the supergranulation pat-
tern disappears. The inversions show an evidence of reverse converging flows at the
depth of ∼10 Mm [159]. This means that supergranulation is a relatively shallow
phenomenon.

1.8.2 Structure and Dynamics of Sunspot

The high-resolution data from the SOHO and HINODE space missions have allowed
us to investigate the structure and dynamics beneath sunspots. Figure 1.41 shows an
example of the internal structure of a large sunspot observed on June 17, 1998 [163].
An image of the spot taken in the continuum is shown at the top. The wave-speed
perturbations under the sunspot are much stronger than those of the emerging flux,
and can reach ∼3 km/s. It is interesting that beneath the spot the perturbation is
negative in the subsurface layers and becomes positive in the deeper interior. One
can suggest that the negative perturbations beneath the spot are, probably, due to
the lower temperature. It follows that magnetic inhibition of convection that makes
sunspots cooler is most effective within the top 2–3 Mm of the convection zone. The
strong positive perturbation below suggests that the deep sunspot structure is hotter
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Fig. 1.41 The sound–speed perturbation in a large sunspot observed on June 20, 1998, are shown
as vertical and horizontal cuts. The horizontal size of the box is 13◦ (158 Mm), the depth is 24 Mm.
The positive variations of the sound speed are shown in red, and the negative variations (just beneath
the sunspot) are in blue. The upper semitransparent panel is the surface intensity image (dark color
shows umbra, and light color shows penumbra). In panel b the horizontal sound–speed plane is
located at the depth of 4 Mm, and shows long narrow structures (‘fingers’) connecting the main
sunspot structure with surrounding pores the same magnetic polarity as the spot [163]

than the surrounding plasma. However, the effects of temperature and magnetic field
have not been separated in these inversions. Separating these effects is an important
problem of solar tomography. These data also show at a depth of ∼4 Mm connections
to the spot of small pores, which have the same magnetic polarity as the main spot. The
pores of the opposite polarity are not connected to the main sunspot. This suggests
that sunspots represent a tree-like structure in the upper convection zone.

Figure 1.42 shows the subsurface structures and flows beneath a sunspot obtained
from HINODE [164]. A vertical cut along the East–West direction approximately
in the middle of a large sunspot observed in AR 10953, May 2, 2007, (Fig. 1.42a),
shows that the wave speed anomalies extend about half of the sunspot size beyond
the sunspot penumbra into the plage area. In the vertical direction, the negative
wave speed perturbation extends to a depth of 3–4 Mm. The positive perturbation is
about 9 Mm deep, but it is not clear whether it extends further, because our inversion
cannot reach deeper layers because of the small field of view. Similar two-layer
sunspot structures were observed before from SOHO/MDI [163] (Fig. 1.41). But, it
is striking that the new images strongly indicate on the cluster structure of the sunspot
[165]. This was not previously seen in the tomographic images of sunspots obtained
with lower resolution.

The high-resolution flow field below the sunspot is also significantly more com-
plicated than the previously inferred from SOHO/MDI [166], but reveals the same
general converging downdraft pattern. A vertical view of an averaged flow field
(Fig. 1.42b) shows nicely the flow structure beneath the active region. Strong down-
drafts are seen immediately below the sunspot’s surface, and extend up to 6 Mm
in depth. A little beyond the sunspot’s boundary, one can find both upward and
inward flows. Clearly, large-scale mass circulations form outside the sunspot, bring-
ing plasma down along the sunspot’s boundary, and back to the photosphere within
about twice of the sunspot’s radius. It is remarkable that such an apparent mass
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Fig. 1.42 Wave speed
perturbation and flow
velocities beneath sunspots
from HINODE data [164]

(a)

(b)

circulation is obtained directly from the helioseismic inversions without using any
additional constraints, such as forced mass conservation. Previously, the circulation
pattern was not that clear.

1.8.3 Large-Scale and Meridional Flows

Time–distance helioseismology [167] and also local measurements of the p-mode
frequency shifts by the ‘ring-diagram’ analysis [134, 137, 138], have provided syn-
optic maps of subsurface flows over the whole surface of the Sun. Figure 1.43 shows
a portion of a high-resolution synoptic flow map at the depth of 2 Mm below the
surface. In addition, to the supergranulation pattern these maps reveal large-scale
converging plasma flow around the active regions where magnetic field is concen-
trated. These flows are particularly well visible in low-resolution synoptic flow maps
(Fig. 1.44). The characteristic speed of these flows is about 50 m/s.

These stable long-living flow patterns affect the global circulation in the Sun. It
is particularly important that these flows change the mean meridional flow from the
equator to the poles, slowing it down during the solar maximum years (Fig. 1.45).
This may have important consequences for the solar dynamo theories which invoke
the meridional flow to explain the magnetic flux transport into the polar regions and
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Fig. 1.43 A portion of a
synoptic subsurface flow
map at depth of 2 Mm. The
color background shows the
distribution of magnetic field
on the surface [167]

the polar magnetic field polarity reversals usually happening during the period of
maximum of solar activity.

1.9 Conclusion and Outlook

During the past decade thanks to the long-term continuous observations from the
ground and space the physics of solar oscillations made a tremendous progress in
understanding the mechanism of solar oscillations, and in developing new techniques
for helioseismic diagnostics of the solar structure and dynamics. However, many
problems are still unresolved. Most of them are related to phenomena in strong
magnetic field regions and in the deep interior. The prime helioseismology tasks are
to detect processes of magnetic field generation and transport in the solar interior,
and formation of active regions and sunspots. This will help us to understand the
physics of the solar dynamo and the cyclic behavior of solar activity.

For solving these tasks it is very important to continue developing realistic MHD
simulations of solar convection and oscillations, and to obtain continuous high-
resolution helioseismology data for the whole Sun. The recent observations from
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Fig. 1.44 Subsurface synoptic flow maps at three depths. The color background shows the distrib-
ution of magnetic field on the surface [167]

HINODE have demonstrated advantages of high-resolution helioseismology, but
unfortunately such data are available only for small regions and for short periods
of time. A new substantial progress in observations of solar oscillations is expected
from the Solar Dynamics Observatory (SDO) space mission launched in February
2010.

The Helioseismic and Magnetic Imager (HMI) instrument on SDO provides unin-
terrupted Doppler shift measurements over the whole visible disk of the Sun with
a spatial resolution of 0.5 arcsec per pixel (4096 × 4096 images) and 40–50 s time
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Fig. 1.45 Evolution of subsurface meridional flows during 1996–2002 for various Carrington rota-
tions [167]

cadence. The total amount of data from this instrument will reach 2 Tb per day.
This tremendous amount of data will be processed through a specially developed
data analysis pipeline and will provide high-resolution maps of subsurface flows and
sound–speed structures [53]. These data will enable investigations of the multi-scale
dynamics and magnetism of the Sun and also contribute to our understanding of the
Sun as a star.

The tools that will be used in the HMI program include: helioseismology to map
and probe the solar convection zone where a magnetic dynamo likely generates this
diverse range of activity; measurements of the photospheric magnetic field which
results from the internal processes and drives the processes in the atmosphere; and
brightness measurements which can reveal the relationship between magnetic and
convective processes and solar irradiance variability.

Helioseismology, which uses solar oscillations to probe flows and structures in the
solar interior, is providing remarkable new perspectives about the complex interac-
tions between highly turbulent convection, rotation and magnetism. It has revealed
a region of intense rotational shear at the base of the convection zone, called the
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Fig. 1.46 A schematic illustration of the SDO–Solar Dynamics Observatory HMI data analysis
pipeline and data products. The dark shaded area indicates Level-1 data products. The boxes to
the right of this area represent intermediate and final Level-2 data products. The data products are
described in detail in the HMI Science Plan [53]

tachocline, which is the likely seat of the global dynamo. Convective flows also have
a crucial role in advecting and shearing the magnetic fields, twisting the emerging
flux tubes and displacing the photospheric footpoints of magnetic structures present
in the corona. Flows of all spatial scales influence the evolution of the magnetic
fields, including how the fields generated near the base of the convection zone rise
and emerge at the solar surface, and how the magnetic fields already present at the
surface are advected and redistributed. Both of these mechanisms contribute to the
establishment of magnetic field configurations that may become unstable and lead
to eruptions that affect the near-Earth environment.

New methods of local-area helioseismology have begun to reveal the great com-
plexity of rapidly evolving 3D magnetic structures and flows in the sub-surface shear
layer in which the sunspots and active regions are embedded. Most of these new tech-
niques were developed during analysis of MDI observations. As useful as they are,
the limitations of MDI telemetry availability and the limited field of view at high
resolution has prevented the full exploitation of the methods to answer the important
questions about the origins of solar variability. By using these techniques for con-
tinuous full-disk high-resolution observations, HMI will enable detailed probing of
dynamics and magnetism within the near-surface shear layer, and provide sensitive
measures of variations in the tachocline.

The scientific operation modes and data products can be divided into four main
areas: global helioseismology, local-area helioseismology, line-of-sight and vector
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magnetography and continuum intensity studies. The principal data flows and prod-
ucts are summarized in Fig. 1.46.

1.9.1 Global Helioseismology: Diagnostics of Global Changes
Inside the Sun

The traditional normal-mode method described in Sects. 1.4 and 1.5, will provide
large-scale axisymmetrical distributions of sound speed, density, adiabatic exponent
and flow velocities through the whole solar interior from the energy-generating core
to the near-surface convective boundary layer. These diagnostics will be based on
frequencies and frequency splitting of modes of angular degree up to 1,000, obtained
for several day intervals each month and up to l = 300 for each 2-month interval.
These will be used to produce a regular sequence of internal rotation and sound–speed
inversions to allow observation of the tachocline and average near surface shear.

1.9.2 Local-Area Helioseismology: 3D Imaging of the Solar
Interior

The new methods of local-area helioseismology (Sects. 1.6–1.7), time–distance tech-
nique, ring-diagram analysis and acoustic holography represent powerful tools for
investigating physical processes inside the Sun. These methods are based on mea-
suring local properties of acoustic and surface gravity waves, such as travel times,
frequency and phase shifts. They will provide images of internal structures and flows
on various spatial and temporal scales and depth resolution. The targeted high-level
regular data products include:

• Full-disk velocity and sound–speed maps of the upper convection zone (covering
the top 30 Mm) obtained every 8 h with the time–distance methods on a Carrington
grid;

• Synoptic maps of mass flows and sound–speed perturbations in the upper convec-
tion zone for each Carrington rotation with a 2-degree resolution, from averages
of full disk time–distance maps;

• Synoptic maps of horizontal flows in upper convection zone for each Carrington
rotation with a 5-degree resolution from ring-diagram analyses.

• Higher-resolution maps zoomed on particular active regions, sunspots and other
targets, obtained with 4–8-h resolution for up to 9 days continuously, from the
time–distance method;

• Deep-focus maps covering the whole convection zone depth, 0–200 Mm, with
10–15-degree resolution;

• Far-side images of the sound–speed perturbations associated with large active
regions every 24 h.
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The HMI science investigation addresses the fundamental problems of solar vari-
ability with studies in all interlinked time and space domains, including global scale,
active regions, small scale, and coronal connections. One of the prime objectives of
the Living With a Star program is to understand how well predictions of evolving
space weather variability can be made. The HMI investigation will examine these
questions in parallel with the fundamental science questions of how the Sun varies
and how that variability drives global change and space weather.
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Chapter 2
The Quiet Solar Photosphere: Dynamics
and Magnetism

Richard Muller

Abstract The Sun is the only solar-type star where the dynamics and the magnetism
can be studied in detail and the physical process involved understood, in particular
those which occur at very small scales. This lecture is restricted to the quiet solar
photosphere. The properties of the three cellular scales of motions observed at the
solar surface (granulation, mesogranulation, supergranulation) are presented, as well
as the numerical simulations which reproduce most granulation properties very satis-
factorily. The granular convection is driven by radiative cooling through the surface.
In these simulations, the mesogranulation appears to be an extension to deeper layers
of the surface granular convection. The mesogranulation also appears as convective,
indirectly driven by the surface radiative cooling. However, several alternative ori-
gins for both the mesogranulation and the supergranulation, have been proposed
too. On the same way, the magnetic structure of the quiet photosphere is described,
including the network and the fields. Their origin is discussed on the basis of the
properties of the magnetic elements and of the results of numerical simulations of
magneto-convection and of local dynamo. In the network, that means at the super-
granular boundaries, the field is concentrated in the form of vertical flux tubes of
sizes smaller than a few hundred kilometers and of magnetic field strength 1–2 kG.
They are visible as bright points located in the intergranular lanes. The presence
of magnetic field is also ubiquitous inside the supergranules, where it is known as
IntraNetwork magnetic field. This field is much different from the network field, con-
sisting of small loops of size 1′′–2′′, closely related to granules. The field strength
is much lower than in the network, not exceeding a few hundreds Gauss, and of
flux lower by one or two orders of magnitude. The time scale of both kinds of field
is short, less than 10 min, determined by the evolution of the neighbouring gran-
ules. The origin of the intranetwork field is not yet clarified: are they fragments of
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magnetic flux rising from deep layers and reprocessed close to the surface by con-
vective motions, or generated near the surface by a fast local dynamo?

2.1 Introduction

The waves which propagate below the surface of the Sun and of solar type stars, are
affected by the strongly turbulent and highly magnetized upper convection zone. It
is thus important to know the dynamic and magnetic properties of these layers on
the Sun, which are observed in much detail at its surface, in order to derive infor-
mations from the propagating acoustic waves. This review is restricted to the quiet
Sun, excluding active regions. The first section is devoted to the various dynamical
patterns observed in the photosphere, the second one to the magnetic structure. In
both sections, the observed properties are presented first, followed by the results of
numerical simulations. The numerical simulations of convection reproduce remark-
ably well the granulation at the surface, and reveal properties on deeper layers not
accessible by direct observations. Magneto-convection simulations allow us to better
understand the origin and the properties of the small magnetic elements which are
observed in the quiet photosphere, and which expands in higher layers.

2.2 Solar Surface Flows

Three scales of motions, more or less distinct, are observed at the surface of the Sun:
the granulation, which is the directly visible manifestation of surface convection; the
mesogranulation, which is detected by the associated vertical or horizontal velocities;
the supergranulation, detected by the associated horizontal velocities and by magnetic
flux concentrations at the cell boundaries.

They have long been believed to be due to the recombination of Hydrogen just
below the surface (granulation) and Helium (HeI, 8,000 km below the surface (meso-
granulation), HeII, 20,000 km below supergranulation). There are now some doubts
with this interpretation. Thus, the origin of the granulation appears well established,
which is not the case yet for the two larger scales, although a convective origin is
prevailing. www://svmlight.joachims.org/

2.2.1 The Solar Granulation

The solar surface is now observed with a spatial resolution reaching the diffraction
limit of the telescopes, thanks to the quality of the sites were they are located and
of sophisticated and reliable restoration techniques (speckle and phase diversity).
It is as small as 0′′1 = 70 km at the largest one, the 1 m Swedish Solar Telescope

www://svmlight.joachims.org/
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Fig. 2.1 The solar
granulation observed with
HINODE with a spatial
resolution of 0′′2; field of
view: 110′′ × 55′′
(80, 000 × 40, 000 km)

in La Palma (Canary Islands) [1]. In images obtained with such a resolution, the
photosphere appears highly structured, because large variations of temperature and
density take place just below the surface. Large variations of the emergent intensities
are implied, visible in what is known as the granulation pattern (Fig. 2.1).

The size histogram of granules is decreasing continuously from the resolution
limit of the best observations (0′′1 = 70 km) to about 4′′ (3,000 km) for the largest
granules. That means that there are much more small than large granules, imply-
ing that one cannot define a characteristic scale, strictly speaking. However, it is
commonly admitted that the typical scale of granules is in the range 1′′–2′′ (700–
1,400 km).

Their lifetime is typically 5–10 min, the largest granules living longer; this corre-
sponds to the returning time of convective cells. The common evolution of a granule
can be described as follows: a new granule, born either by spontaneous appearance in
an intergranular space, either from the merging of two granules or, more frequently, as
a fragment of a large splitting granule, first expands, then splits into several fragments
when it reaches a size larger than about 2′′, or merge with another granule,or simply
fade away [2]. The most spectacular and vigorous example of granule fragmentation
is represented by exploding granules, first observed at the Pic du Midi Observatory
in 1969 [3]. In this case, as the granule expands, a dark area appears in the center and
the granule splits up to six or seven fragments (Fig. 2.2). Granules can also vanish or
merge with another granule. Repeating fragmenting and exploding granules form a
family of granules [4–6]. A family originates from a single granule at its beginning.
Its typical lifetime is 1–2 h (but lifetimes as long as 8 h were reported) and its typical
spatial extension is 5′′–10′′.

Bright granules are associated with upflows, while the surrounding dark inter-
granular lanes are associated with downflows. Such a correlation is characteristic
of convective cells. The convective nature of the solar granulation is confirmed by
numerical simulations (see Sect. 2.2.5). The typical vertical velocity is 1–2 km s−1.

Inside granules, the speed of the divergent horizontal flow is also about 1–2 km s−1.

The granular convective pattern penetrates into the photosphere, with a speed decreas-
ing with height; velocities of several hundreds m s−1 are still measured in the
outer photosphere, 500 km above the surface. But the intensity (which means the
temperature) fluctuations vanish at a much lower height, about 100 km above the
surface [7].
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Fig. 2.2 Exploding granule; sizebox: 4′′×4′′; time interval: 30 s (from the Pic du Midi Observatory)

Observations and numerical simulations clearly show that the origin of the gran-
ulation is convective. But some turbulent properties have been inferred from obser-
vations, like the increasing number of small granules, the presence of fine structure
inside granules, the slope of the power spectrum of the emergent intensity fluctua-
tions, which is close to −5/3, the fractal dimension, the large width of spectral lines,
indicating turbulence, in the interface between granules and intergranules, which are
regions subject to shear between ascending and descending plasmas, as well as from
numerical simulations (the downflowing plasma is more turbulent than the upflow-
ing plasma, which rises gently). It is not surprising to find some turbulent properties
for the solar granulation, owing to the very low gaz viscosity and extremely high
resulting Rayleigh number.

2.2.2 The Solar Mesogranulation

The mesogranulation, of scale intermediate between the granulation and the super-
granulation, was detected for the first time in 1981 [8] at Sacramento Peak Obser-
vatory (USA), as a pattern of vertical velocities of about 100 m s−1 (Fig. 2.3). It was
revealed on Dopplergrams averaged over about 1 h, so that the granulation veloc-
ity pattern is sufficiently smoothed. It also appears as a pattern of diverging cells
visible in maps of horizontal flows obtained by tracking the motions of granules
at the solar surface [9, 10]. An example is shown in Fig. 2.4. The amplitude of the
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Fig. 2.3 Supergranulation
(upper panel) and
Mesogranulation (lower
panel) as determined from
granulation Dopplergrams
time averaged over a 60 min
period. The field of view is
160′′ × 60′′. The
Supergranulation is revealed
by a spatial averaging with a
9′′ × 9′′ running window. The
mesogranulation, of much
smaller scale, is revealed
with 3′′ × 3′′ averaging
(from November et al. [8])

vertical and horizontal velocities of mesogranules are typically 50–100 m s−1 and
300–500 m s−1, respectively; the time scale is of the order of 1 h. Mesogranules are
advected outward from the center to the boundary of supergranules by the super-
granular flow with a speed of 300–500 m s−1 [11]. Inside mesogranules, granules are
more vigorous than outside: they are larger, brighter and exploding with more energy.
Mesogranules coincide with families of granules [5, 6]; their center is brighter than
their boundary. The correlation between upflows and excess of brightness at cell
centres and between downflows and deficit of brightness at the external boundaries,
together with the presence of a diverging cellular flow, are in favor of a convective
origin. But, because of the absence of two peaks in the power spectra (see Sect. 2.2.4),
it is not clear whether it is a distinct scale from the granulation.

2.2.3 The Solar Supergranulation

The supergranulation, discovered in 1954 [12] is a pattern of horizontal flows detected
by Doppler measurements away from the disk centre [13], where the line of sight
components can be detected (Fig. 2.5). This cellular horizontal flow can also be
revealed near disk centre by tracking the motion of granules or mesogranules on the
solar surface ([9, 11, 14–16], Fig. 2.6). The size and lifetime of a typical supergran-
ule are 50′′ (30,000 km) and 24 h, respectively. Helioseismological soundings show
that supergranular cells do not extend deeper than 5,000 km below the surface. The
horizontal flow diverging outward from cell centers to boundaries, is 300–400 m s−1.

The vertical flow is very weak and hard to be detected, because of the high level of
the granulation noise, and of the presence of magnetic fields in the boundaries which
complicates the measurements. Downflows of the order of 100 m s−1 are reported
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Fig. 2.4 The velocity pattern
at the solar surface, derived
with the help of granules
used as tracers; the cells of
diverging vectors correspond
to mesogranules (from
Roudier et al. [10])

Fig. 2.5 The cellular flows
in a full-disk SOHO/MDI
Dopplergram. The flow field
is dominated by the largely
horizontal flows in the
supergranules with typical
velocities of 300–400 m s−1

(see [17] for the references). A weak excess of temperature of 1–3 K has been recently
reported [18]. A diverging flow outward from cell centers, a weaker temperature and
the presence of downflows at the boundaries, are indications of convection in super-
granules. But, on the other hand, the probability distribution function of the diver-
gence field computed by [16] would show, according to these authors, the signature
of intermittency of the supergranulation and thus its turbulent nature. Consequently,
the origin of the supergranulation is still an open question (see Sect. 2.2.7).
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Fig. 2.6 The
supergranulation velocity
field as derived from
granulation tracking, with
divergence contours
superimposed (scales shorter
than 8 Mm have been filtered
out and a time window of
150 min has been used)
(from Rieutord et al. [16])

2.2.4 The Power Spectrum of Photospheric Flows

Power spectra of horizontal photospheric flows, which are convenient tools to exam-
ine the properties of velocity patterns, have been derived either from full disk dopp-
lergrams [19] or from coherent structure tracking in limited areas near the disk centre
[16] (in this case, the coherent structures are granules). The spectrum derived from
dopplergrams acquired by the MDI instrument on the SOHO spacecraft has two dis-
tinct peaks (Fig. 2.7), corresponding to granules and supergranules, but there is no
distinct feature visible at wavenumbers corresponding to mesogranules. The power
spectra of the horizontal flows derived with agranulee tracking technique, as shown in
Fig. 2.4, but in a much larger field of view, also show a conspicuous peak at the super-
granular characteristic scales [16]. In this analysis, the supergranular peak appears in
the power spectra obtained with two different data sets: one obtained with TRACE in
the space (field of view: 1000′′ × 1000′′, pixel size: 0′′5), the other obtained with the
wide-field camera CALAS at the Pic du Midi Observatory (400′′ × 400′′, pixel size:
0′′1). Regarding these converging results, derived from very different kinds of data,
one may be quite confident that the power spectrum of photospheric flows has a real
peak at the typical scale of the supergranulation, which thus appears as distinct from
granulation and mesogranulation. On the other hand, mesogranulation seems to be
a simple extension of granulation to larger scales, probably associated to families
of granules. In the numerical models presented in the next section, mesogranulation
also appears as an extension of granulation seated in deeper layers.

2.2.5 Numerical Simulation of the Solar Convection; Origin
of the Granulation

3D as well as 2D numerical simulations have been computed to be compared with the
solar granulation, in order to understand the solar convection and get informations
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Fig. 2.7 Doppler velocity
power spectrum for
SOHO/MDI data. The
supergranule peak at
1 ≈ 120 (corresponding to a
size of 35 Mm) is prominent
as is the broad peak at
1 > 1, 000 (or at size
<4.5 Mm) corresponding to
the range of mesogranules
and granules. There is no
spectral feature suggesting a
component for mesogranules
cells (from Hathaway et al.
[19])

not available by direct observations. 2D models are less realistic, but are useful as
they allow us to have an easier control of the effect of various physical parameters
on the results. 3D simulations are more realistic, of course, but it is more difficult
to interpret the results. Because the appearance of the granulation at the surface is
well reproduced by the 3D simulations, as well as many different diagnostics, one
may be confident that the physical origin of the solar granulation is well understood.
Consequently, I will only present here the results from the 3D simulations, which are
all in remarkable agreement, despite different assumptions concerning, in particular,
fluid compressibility and fluid viscosity and the treatment of the radiative transfer
(Stein and Nordlund [20–23], who were the precursors in convection simulation),
and [17, 24–28] among others). These models are based on the solution of the basic
equations of fluid dynamics, including radiative transfer (see [29] for the details). It
is crucial that the radiative transfer is taken into account, because near the surface
of the Sun, the energy flux changes from almost exclusively convective below the
surface, to radiative above the surface. Because a large fraction of the internal energy
is in the form of ionization energy near the surface, the equation of state includes the
effect of ionization and excitation of hydrogen and other abundant elements, and the
formation of H2 molecules. The codes are stabilized by a numerical viscosity which
is several orders of magnitudes larger than the viscosity on top of the convection
zone of the Sun. This is their main weakness. In some models [17, 24–26], the fluid
is incompressible, allowing an exceptionally large Rayleigh number and a vigorous
convection, while in the more realistic models, the fluid is compressible, but at
the expense of the vigor of the convection. The box size is limited by the computer
capacities, in general to about 250×250×160 grid points, covering a spatial domain
6×6 Mm horizontally and extending from the temperature minimum, 500 km above
the surface, to 2,000 km below.

The numerical simulation show that the solar convection is driven by radiative
cooling at the surface, producing the familiar granulation pattern. Stein and Nord-
lund [22], for example, describe the convective flow as follow: beneath the surface,
it is asymmetric, consisting of a gentle, expanding, structureless and warm upflow,
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Fig. 2.8 Snapshot of entropy
fluctuations. Low entropy
gas forms the cores of
downdrafts that penetrate
through the entire
computational domain (from
Stein and Nordlund [23])

in which strong, isolated, converging, filamentary cool downflows are embedded
(Figs. 2.8, 2.9). In the interior of granules, warm plasma ascends. As it approaches and
passes through the optical surface, the plasma cools, recombines and loses entropy. It
then turns over and converges into dark intergranular lanes and further into the vertices
between granular cells. The vertices feed turbulent filamentary downdrafts below the
surface, which merge into deeper, more widely spaced filaments. These downdrafts
drive both larger scale cellular upflows and smaller scale turbulent motions. The
horizontal flow of hot fluid, which is advected toward the cool filaments, has a hier-
archical cellular appearance: very small cells at the surface and successively larger
cells at larger depths are driven by the merging of the filamentary downdrafts. The
surface appears highly structured (granulation), because large variations of temper-
ature (≈5,000 K at the same geometrical depth) and density take place just below
the surface. These large variations are a consequence of the rapid drop of the tem-
perature in a thin layer (≈ 100 km), where the convective energy is transformed
into radiative energy, and of the enormous temperature sensitivity of the opacity of
the photospheric plasma. Large variations of emergent intensity are implied, visi-
ble as the granulation pattern. Large deep seated cells are only visible through the
advection of smaller cells by their horizontal velocity fields. Most ascending parti-
cles never reach the surface; they return to the downflows beneath the surface. Both
observed and simulated granulation look very similar (Fig. 2.10) and several gran-
ulation properties are well reproduced by the numerical simulations: the intensity
contrast: 20–30% from the models, 12% for images restored for blurring; granule
fragmentation; C-shape of photospheric lines (the combination of the blue-shifted
line profile of hot upflowing plasma in granules with the weaker red-shifted profile
of cold downflowing plasma in intergranules, results in an asymmetric profile, whose
bisector has a shape resembling the letter C, Fig. 2.11). It must be noted, however,
that in the real Sun, the upper convection zone and the photosphere are pervaded by a
non negligible amount of magnetic flux, which can disturb the dynamical processes,
as we shall see in Sect. 2.3.8.
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Fig. 2.9 A schematic
representation of convective
flows below the surface: flow
lines show merging of the
downdrafts on successively
larger scales; the warm
ascending plasma turns out
over and converges into cool
downdrafts (from Spruit
et al. [21])

Fig. 2.10 Comparison of
granulation as seen in the
emergent intensity from a
simulation, and as observed
by the Swedish Vacuum
Solar telescope (50 cm). The
top row shows a simulation;
the middle row shows this
image smoothed by an Airy
plus exponential
point-spread function; the
bottom row shows a white
light images from La Palma.
Note the similar appearance
of the smoothed simulation
and the observed granulation
(from Stein and Nordlund
[22])

2.2.6 Origin of the Solar Mesogranulation

Two main origins have been suggested for the mesogranulation: convection or inter-
action between granular flows:

Convection. A pattern of convective cells of mesogranular scale appears at the
bottom of the computational box (500 km below the surface), as a result of the
numerical simulations of convection presented by Stein and Nordlund [20, 22, 23].
These convective cells are driven by merging of filamentary downdrafts in deeper
layers; they advect the granules above. granulation movies also show that granules
are advected by mesogranular flows.

In the simulation made by Rincon et al. [30] of fully compressible turbulent con-
vection in a polytropic atmosphere, the turbulent energy power spectrum is dominated
by a mesoscale pattern. The authors show that this pattern has a genuine convective
origin, and suggest that mesogranulation is the dominant convective mode below the
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Fig. 2.11 Top: synthetic
(dash-dotted) and observed
(full drawn) profiles of FeI
5507. Bottom: bisectors of
the same line: synthetic
(dash-dotted) and observed
(full drawn) (from Nordlund
[29])

photosphere. However, the results have to be considered with caution, because of the
absence of radiative transfer in the simulation.

Interactions between granules or intergranular flows. In Cattaneo et al.’s model
[25] of compressible, non radiative atmosphere, the temperature fluctuations at the
surface exhibit a mesoscale pattern superimposed to the more conspicuous granular
pattern (Fig. 2.12). The authors suggest that their mesoscale pattern results from a
collective non linear interaction between granules. But, such a mesogranular pattern
doesn’t appear so clearly in more realistic compressible and radiatiave atmospheres,
neither in solar granulation images.

On the other hand, Rast [17] finds that spatial and temporal scales naturally arise
through the collective advective interaction of many small-scale and short-life down-
flow plumes; in this simplified model the surface flows advect the plumes, which can
merge together, eventually producing strong downflows spatially distributed with a
characteristic length-scale; these long-lived downflows then define the vertices of
the mesogranular flowss in a first step, then the supergranular flows as the downflow
plumes merge further in deeper layers.

As the Stein and Nordlund’s model [20, 22, 23] is computed in realistic physical
conditions (except for the viscosity), one may believe that mesogranulation is of
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Fig. 2.12 Temperature
fluctuations in Cattaneo
et al.’s simulation [25]; two
distinct cellular patterns
appear: convection cells
corresponding to granules
and larger cells of
mesogranular scale bounded
by darker (lower
temperature) lanes which
coincide with stronger
downflows

convective origin rather than resulting from interactions, the driving force being the
radiative cooling through the solar surface which primarily produces the granulation
pattern.

2.2.7 Origin of the Solar Supergranulation

Like for mesogranulation, convection and interactions between granules or between
downflow plumes have been suggested for the origin of the supergranulation. In
addition, an unconventional magnetically driven origin has also been proposed.

Convection: Recently, Stein and co-workers [31, 32] have adapted to mesogranular
and supergranular scales, the numerical simulation they have developed previously
to simulate granulation and mesogranulation. To that end, they increased the size of
the computational box from 6 × 6 × 2.5 Mm to 96 × 96 × 20 Mm, at the expense
of the spatial resolution, which was decreased from 25 to 150 km. With such a low
resolution, granulation cannot be simulated properly. The horizontal dimension of
the box is twice the typical size of supergranules; in the vertical dimension, the box
includes the hydrogen, first and most of the second helium ionization zones. con-
vection is driven by buoyancy. Close to the surface buoyancy driving is balanced by
divergence of the kinetic energy, but deeper down it is balanced by dissipation. Gran-
ules are not fully resolved; mesogranular scale cells appear just below the surface; the
size of the cells increases with depth, as filamentary downflows merge and reach the
supergranular scale at the bottom of the box. The snapshots of streamlines in vertical
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slices look very similar to the snapshot shown in Fig. 2.8; the only difference is the
much larger real spacing between the downdrafts. The power spectrum is continu-
ous from mesogranular to supergranular scales, in disagreement with the observed
spectra, which show two distinct peaks (Sect. 2.2.4, Fig. 2.7). Unfortunately, it is not
possible yet to simulate granulation, meso and supergranulation simultaneously in
the same computational box.

Interactions: The same kinds of interactions have been proposed for the origin of
supergranules as for the origin of mesogranules: collective interaction of exploding
mesogranules [33]; advective interaction of downflow plumes [17]: same model as
for the origin of mesogranules, but extended to the plumes spatially distributed at
the mesogranular scale which merge deeper down to form a pattern of stronger
downflows at the supergranular scale.

Magnetic driving: A novel and original explanatory model has been proposed
by Crouch et al. [34], who suggest that the supergranular magnetic network is a
spatial pattern that emerges autonomously from the advection of small-scale mag-
netic elements at the granular scale and their subsequent interaction, characterized
by aggregations and cancellations. Once build up, the emergent network serves as a
template to seed supergranular downflows, possibly by interfering with convection,
localized cooling. That means that the merging magnetic network builds up before
the supergranular horizontal flow develops.

It is interesting to note that the same various kinds of origin are proposed for
supergranules and mesogranules. In the simulation of convection, where the scale of
the developed cells depends, among others parameters, of the size and of the spatial
resolution of the computational domain, the size of the cells increases smoothly from
granulation scale at the optical depth unity (which is the simulated solar surface),
to supergranulation scale at the bottom. Supergranulation appears indirectly driven
by surface radiative cooling, [31, 32]. The corresponding power spectra should be
single-peaked, extending from granular to supergranular sizes, since the transition
between these scales is very smooth in the simulations. But this is not supported by
the observations, since the observed power spectra have two distinct peaks, a wide
one, centered at about 4′′,which overlays both the granular and mesogranular ranges
of sizes, and another one centered at about 50′′, which corresponds to the mean size
of supergranules.

2.3 Magnetic Field in the Quiet Photosphere

2.3.1 Introduction

Late type stars with deep convective envelopes are magnetically active. But it is only
on the Sun that this kind of magnetism can be studied in details.

The solar magnetism extends over very wide ranges of absolute Magnetic flux and
of lifetimes (Fig. 2.13), including: large bipolar active regions, containing sunspots,
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Fig. 2.13 Full-disk
magnetogram from
SOHO/MDI. The
photospheric network is
clearly visible away from the
active regions.

with flux larger than 5 × 1021 Mx (1 Mx is the magnetic flux of a 1 G field strength
over a 1 cm2 area), living several weeks or more; small bipolar active regions con-
taining pores, with flux in the range 1 × 1020–5 × 1021 Mx, lasting several days;
ephemeral bipolar active regions (ERs), without neither sunspots nor pores, with
flux in the range 3 × 1018–1 × 1020 Mx, lasting several hours; individual elements
of the photospheric network, at the boundaries of supergranules, whith flux in the
range 1017–1018 Mx, lasting a few minutes, individual elements inside the network,
known as the Intranetwork (IN) magnetic field, with flux in the range 1016–1017 Mx,
also lasting no more than a few minutes. The magnetic flux emerges onto the phos-
tosphere in the form of bipolar regions; while active regions containing sunspots
appear in the sunspot belts, on each side of the solar equator, ERs can emerge every-
where on the surface of the Sun, from equator to the poles. The magnetic flux also
emerges at the very small granulation scale (1,000 km), inside the network, which
means inside supergranules. The network is believed to be fed from active regions
and from ephemeral regions, by large scale circulation and diffusion by supergran-
ules; it may also be fed by intranetwork flux, advected to supergranular boundaries
by supergranular flows. This point will be discussed in more details in Sect. 2.3.10.

I restrict this chapter to the quiet Sun magnetic field, not including active regions,
where it appears concentrated at the boundaries of supergranules, forming the pho-
tospheric network.

When the magnetic sensitivity is increased, the IN magnetic field, one order of
magnitude weaker in term of flux, is detected inside supergranules, i.e. inside the
network (Fig. 2.16). As we will see below, the properties of the magnetic field in the
network and inside the network are much different. While it is well established that
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Fig. 2.14 Full-disk CaII
3,933 K-line filtergram,
taken with CLIMSO at the
Pic du Midi Observatory.
The photospheric network
forms bright cells away from
the active region

the magnetic field in active regions originates at the base of convection zone, the
origin of the network and intranetwork fields is not well understood yet.

Recent observations of high spatial resolution and high sensitivity, performed with
the spectro-magnetograph attached to the Solar Optical Telescope (SOT) on board the
satellite HINODE as well as with several ground-based telescopes (the German Vac-
uum Tower Telescope (VTT) and the French THEMIS in Tenerife, Canary Islands,
the Swedish SST at La Palma, Canary Islands, the Dunn telescope at Sac Peak, New
Mexico), have revealed the ubiquitous presence of magnetic flux everywhere on the
Sun, at the scale of the granulation, and provide magnetic flux measurements and
magnetic field determinations with unprecedented precision, changing our view of
the quiet Sun magnetic field.

2.3.2 The Photospheric Network

The photospheric network underlines the supergranule boundaries, and is formed by
elements of small sizes (less than 200 km) and of strong field strengths (1–2 kG). It
is cospatial with the bright chromospheric network which is visible in CaII 3,933
filtergrams (Fig. 2.14): a Calcium bright point corresponds to each magnetic element,
indicating that they are hotter than the surrounding atmosphere (Fig. 2.15). The net-
work is made of magnetic patches where one polarity is dominant in longitudinal
field magnetograms (Fig. 2.16).
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Fig. 2.15 Magnetogram of
the remnant of an active
region (bottom figure) and
the corresponding CaII 3933
filtergram (top figure) taken
with the 1 m Swedish Solar
Telescope in La Palma. It is
not a real quiet Sun
magnetogram, but it nicely
shows how the strong and
vertical magnetic field
concentrates at the
boundaries of supergranules,
as clearly visible in the upper
right of the field of view
(from Berger et al. [1])

The high field strength and the small size were first inferred from low resolution
observations with an indirect method, called ‘magnetic signal ratio’ [35]. In this
method, the Stokes-V polarization signal is measured in two different lines belonging
to the same multiplet, like FeI 5250 and FeI 5247, which mainly differ in the Landé
factor, g = 2 and 3, respectively for these two lines. For weak magnetic fields, i.e.
smaller than about 1,000 G, the circular polarization signal measured in the two
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Fig. 2.16 High sensitivity and high resolution magnetogram of the vertical component of the mag-
netic field in the quiet Sun, obtained with the Solar Optical Telescope/Spectro-Polarimeter (SOT/SP)
aboard the HINODE spacecraft. Field of view: 165′′ × 115′′ (120 Mm × 84 Mm). It shows th pho-
tospheric network (formed by the large patches) and the intranetwork (IN) field (smaller patches
inside the network) (from Lites et al. [62])

lines should be in the ratio 3/2. For stronger fields, it should be lower, because of a
saturation effect in the line with the stronger Landé factor. In the network, Stenflo
[35] found a ratio smaller than 3/2 and concluded that the field strength should be
of the order of 1–2 kG. For such a high field strength, the measured flux implies
that the size of the magnetic elements is small, in the range 100–300 km. Soon after,
a pattern of very small bright points (called the ‘Solar Filigree’), corresponding to
the photospheric network observed with a high spatial resolution, was discovered by
Dunn and Zirker in 1973 [36] in high resolution filtergrams, obtained in the wings of
the line Hα, supporting Stenflo’s finding (see Fig. 2.17, where the filigree is observed
in the G-Band at 4,305 Åinstead of the Hα line wings).

Small size and kG field strength, led Spruit in 1976 [37], to the concept of a
vertical, evacuated, concentrated flux tube (Fig. 2.18); it explains successfully the
excess of brightness in the network and facular elements and its centre to limb
variation. The presence of kG magnetic field inside the flux tube, implies that the
gas pressure is lower than outside; consequently the tube is partly evacuated and is
oriented vertically by buoyancy. Because of this partial evacuation, the gas inside
the tube is radiatively heated through the walls by the hotter gas outside, and one
sees deeper and hotter layers inside the tube. This explains the observed excess of
brightness in small size magnetic elements relatively to the surrounding atmosphere.
The brightness excess increases in higher layers, because the evacuated, thin flux
tube, is increasingly heated by the hotter tube walls. The concept of concentrated
flux tubes has been confirmed by recent high resolution and high magnetic sensitivity
observations made with HINODE/SOT, and with several earth based telescopes (the
1 m Swedish SVST, the German VTT, the French THEMIS, all located in the Canary
Islands).
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Fig. 2.17 The photospheric
network visible in the
G-Band lines of the CH
molecule at 4,305 Å,
as observed with
HINODE/SOT. It surrounds
a supergranule

Fig. 2.18 A schematic
representation of an
evacuated magnetic flux tube
(see the text). The diameter
of the tube is 100 km below
the surface. The gas inside is
heated by the hotter external
plasma. In the evacuated
tube one sees deeper, hotter
layers, explaining the excess
of brightness in magnetic
elements (from Spruit [37])

One can summarize the properties of the magnetic elements in the photospheric
network as follow:

Magnetic field strength: 1–2 kG, first deduced from the indirect line ratio method
described above; high field strengths have been confirmed by direct measurements
in the IR, thanks to the wide separation of the circular Zeeman components in this
wavelength range; they have also been confirmed by several other indirect determina-
tions: by the line ratio method, but with higher spatial resolution than in the original
Stenflo’s observations from 1973; by LTE inversion of the Stokes I, V, Q, U profiles
of photospheric lines, based on Milne-Eddington atmospheres, in which the temper-
ature is assumed to vary linearly with the geometrical depth. The inversion returns
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the values of about ten parameters, including the three components of the magnetic
field (strength, inclination, azimuth), the spatial filling factor, directly related to the
size of the magnetic elements, the variation of the temperature with height, etc.

- Magnetic field orientation: essentially vertical, as shown by the quasi absence of
linear polarization in observations made at the disk centre, and inferred from Stokes
profiles.

- Magnetic flux: 1–5 × 1017 Mx.
- Flows in the tubes: flow velocity is usually determined by the shift of the zero-

crossing position of the Stokes-V profile (it is the wavelength position where the
V-polarization is zero) in the magnetic element, compared to the position of the
maximum of the Stokes-I profile averaged in the surrounding non magnetic area.
When the spatial resolution is not better than 1′′, several magnetic elements must be
contained in the resolution element to produce a detectable signal and the measured
velocity is found to be ascending; but when the resolution is sufficient to isolate
individual elements, the measured velocity can be ascending or descending. In recent
high spatial resolution (0′′3)made with SOT/HINODE, transient downflows as high
as 7 km s−1 have been reported [38] during the cooling/concentration phase of a
flux tube. The downward flow bounces back at the dense bottom layer, and upward
motion appears, which may produce a shock wave in the upper photosphere. Such
‘rebounds’ have been observed by [39] and [40]. Upflows also appear in the 2D
dynamical fluxtube model of Steiner et al. [41].

2.3.3 Observation of the Photospheric Network in the G-Band
at 4,305 Å

The magnetic elements of the photospheric network are easily observed in filtergrams
made in the bandhead of the CH molecule at 4,305 Å, known as the G-Band, with
a filter 10 Å wide (Fig. 2.17). Because of the presence of many strong absorption
lines, the equivalent height of formation is 100–200 km above the surface, where the
contrast of the magnetic elements relatively to the quiet photosphere increases. The
contrast is enhanced in the G-Band, because most lines being of molecular origin, the
opacity inside the relatively cool magnetic flux tube is decreased, allowing us to see
deeper, hotter layers than outside. Thanks to the very short exposure times allowed
by the relatively wide bandpass of G-Band filters which freezes the atmospheric
seeing, the magnetic elements can be observed with a spatial resolution close to the
diffraction limit of ground-based telescopes (0′′1, in the best case, at the Swedish 1m
telescope in La Palma), which cannot be reached in magnetograms yet. They were
first observed by Muller at the Pic du Midi Observatory in 1980 [42]. In G-Band
images, magnetic elements are visible as tiny bright features, more or less elongated,
smaller than 0′′5, located in intergranular lanes. Many of them are detected at the dif-
fraction limit of the telescopes, wich means that they should be smaller than 100 km
or so [43–46]. For simplicity we call the G-Band bright features ‘G-Band Bright
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Points’, or ‘GBPs’, even if their shape is not strictly roundish, but elongated. GBPs
are commonly used as proxies of magnetic elements and are useful for improving
our understanding of the small scale solar magnetism. For example,time series of
G-Band images allow us to investigate their dynamics and their interaction with gran-
ules, which is not so easy directly with magnetograms. They have shown that the
GBPs, and consequently the associated magnetic elements, evolve very dynamically
with time scales of a few minutes (which is the evolution time scale of granules), mov-
ing in the intergranular lanes, primarily driven by the evolution of the surrounding
granules [47–51]. Continuous fragmentations and merging of GBPs occur continu-
ously, indicating that this should also be the fundamental mode of evolution of the
associated magnetic structures in the photospheric network. By the way, this should
also be the common behavior of the magnetic elements in active region plages.

All GBPs are spatially related to magnetic flux. But, while all isolated GBPs cor-
respond to magnetic elements of nearly the same spatial extension, when several of
them are close together, forming clusters or ribbons, the situation is more compli-
cated: the magnetic flux extends over the whole cluster or ribbon area; the bright
elements coincide with flux maxima, but the space in between them is magnetized
too [1, 52], (Fig. 2.19).

GBPs are buffeted by the evolving granules; their proper motion is chaotic with a
mean speed of 1.4 km s−1, and a maximum velocity of up to 5 km s−1.These transver-
sal motions can propagate along the flux tubes as transverse magneto-acoustic waves
up to the corona [53, 54]. The energy transported by these waves from the network
(i.e. from the quiet photosphere), is one order of magnitude larger than required
to heat the corona [55]. Thus, the buffeting of GBPs by granules can contribute
significantly to the heating of the solar corona.

2.3.4 Intranetwork Magnetic Field

Livingston and Harvey [56] detected for the first time in 1971, at the Kitt Peak Obser-
vatory (USA), magnetic flux inside the network (i.e. inside supergranules), in high
sensitivity line-of-sight circular polarization magnetograms made near the disk cen-
tre. That kind of magnetograms reveals the vertical component of the magnetic field,
relatively to the solar surface. This field is known as the Intranetwork (IN) Magnetic
Field and is made of mixed polarity elements, often forming bipoles (Figs. 2.16 and
2.20). The bipole elements have a size of 2′′–3′′ and are separated by about 10′′ [57].
Both their size and flux change very rapidly, with a typical time scale of a few tens
of minutes [58]. The flux per element is of the order of 5 × 1016 Mx, one order of
magnitude smaller than in the network.

The IN field tends to appear inside supergranules, 2′′–5′′ in extension; the two
components move appart and reach a separation of about 10′′. They are advected
towards the supergranule boundaries by supergranular flows, where they can merge
with a network element of the same polarity, or cancel when they meet a network
element of opposite polarity.
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Fig. 2.19 Relation between G-Band Bright features (GBPs) and magnetic elements observed with
a 0′′1 spatial resolution with the Swedish Telescope at La Palma. a G-Band 4,305 Åfiltergram, b
CaII 3,968 H-line filtergram, c FeI 6302 magnetogram, d Binary mask of the G-Band emission in
panel (a) (from Berger et al. [1])

The IN magnetic flux is spatially displayed on a mesogranular scale (5′′–10′′),
being stronger at the mesogranular cells boundaries than inside (Figs. 2.20 and 2.21),
but remaining weaker than in the network at the supergranule boundaries. In higher
resolution line-of-sight magnetograms approaching 0.5′′, like those obtained at the
Sac Peak Observatory (USA) [59] with the Dunn Tower Telescope, or at Tenerife
[60], with the German VTT (Fig. 2.22), the vertical component of the magnetic field
appears to be closely related with the granulation pattern, located preferentially in
intergranular lanes and associated with downflows. However, some magnetic flux is
also found associated with granules. Magnetic flux in the range 5×1015–5×1016 Mx
are measured, and field strength in the range 200–1,000 G estimated from the Stokes-
V profiles of the IR line FeI 15658, definitely weaker than in the network. These weak
magnetic features evolve in close connection with the solar granulation.
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Fig. 2.20 Central 40′′ square highlighted in Fig. 2.14, shown in expanded view. Vertical flux FV
(left) and Transversal flux FT (right) for the Quiet-Sun map of Fig. 2.14. The gray scale for FV
saturates at ±50 Mx cm−2 (1 Mx cm−2 = 1 G), but it saturates at 200 Mx cm−2 for FT . White
in the left panel denotes positive flux, and dark in the right panel corresponds to high values of
the transverse flux. Note the supergranular cell surrounded by strong flux in the left panel located
between the coordinates 15:35 and 10:38, and the mesogranular size areas in both images having
smaller flux (from Lites et al. [35])

Fig. 2.21 Line-of-sight
magnetogram of a 25′′ × 15′′
area obtained with the 1 m
Swedish Telescope at La
Palma, showing only high
flux signals above
50 Mx cm−2. Note the
regular pattern with a size
similar to the 5′′–10′′ scale of
the mesogranulation.
Tick-marks correspond to
1 arcsec (from Cerdeña et al.
[60])

2.3.5 Horizontal Component of the Intranetwork Magnetic Field
and Granular Magnetic Field

Horizontal magnetic flux structures were revealed with the Advanced Stokes
Polarimeter (ASP) at the Sac Peak Observatory (USA), by Lites et al. [61], in 1996.
The horizontal component was discovered much later than the vertical component,
because the polarization signals in the Q and U Stokes parameters are as small
as 0.1–0.2% of the continuum intensity, i.e. one order of magnitude weaker than
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Fig. 2.22 Speckle
reconstructed broad-band
image overlead with a
line-of-sight magnetogram
of FeI 6302 Å, with contours
at flux densities FV =
±30,±50,±70,±90 Mx−2.

The solid and dotted
contours indicate opposite
polarities. The distance
between tick-marks is
1 arcsec (from Cerdeña et al.
[60])

the Stokes-V signal. Since 2007, the horizontal component has been observed with
higher spatial resolution (0′′3) and magnetic sensitivity (0.05% of the continuum
intensity), with the HINODE/SOT Spectro-Polarimeter, designed by Lites on the
basis of the ASP. This spectro-polarimeter provides quasi-simultanous maps of the
horizontal and vertical components of the solar magnetic field, where the IN field
appears to be ubiquitous in the Quiet Sun. There is no direct spatial correspondence
between the two components (Fig. 2.20). The vertical fields are concentrated in the
intergranular lanes (Fig. 2.22); the weaker horizontal fields do not coincide with the
locations of the vertical fields and occur preferentially at the edges of bright gran-
ules or inside them [61, 62]. This kind of spatial relation between the horizontal
and the vertical components, suggests that the IN field consists of small � loops, a
few arcseconds of dimension, vertically rooted in the intergranular lanes, connected
by a mainly horizontal field above granules. The presence of � loops closely asso-
ciated with granules has been recently confirmed by high resolution time series of
vector magnetograms obtained with the German VTT at Tenerife [63] and with the
SOT/Spectro-Magnetograph [64–66]. The emergence of small magnetic � loops is
described as follow by Centeno et al. [64]: the horizontal magnetic field appears prior
to any significant amount of vertical field (Fig. 2.23); as time goes on, the traces of
the horizontal field disappear, while the vertical dipoles drift -carried by the plasma
motions- toward the surrounding intergranular lanes. These events take place within
typical granulation timescales.

2.3.6 Physical Properties of the Intranetwork Magnetic Field and
Comparison with the Properties of the Network Field

Recently, our knowledge of the properties of the IN magnetic field has been very
much improved, thanks to the high spatial resolution and high magnetic sensitivity
observations made with the HINODE/SOT Spectro-Polarimeter mentioned above.
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Fig. 2.23 Two examples of emergence of magnetic flux in the form of an� loop observed with the
HINODE/SOT instrument. Top: four granulation images separated by 125 s, with the contours of
magnetic signals superimposed, where the thick contours represent positive and negative circular
polarisation signals, and the thin contours in between represent linear polarisation signal (from
Centeno et al. [64]). Bottom: the rows show the time evolution of three different physical quantities.
Top row: circular polarisation CP (vertical magnetic fiel); middle row: linear polarisation LP (hori-
zontal magnetic field); bottom row: continuum intensity. The region where LP is larger than 0.3%
is enclosed by Black lines. The emergence of the horizontal magnetic flux starts at �t = 0 s. Note
the clear correlation between the emerging magnetic flux and the granule location (from Ishikawa
et al. [65])

Spectro-magnetograms can be obtained at a cadence of 2 min on a small area (4′′
wide and 82′′ long), allowing us to investigate the temporal evolution of IN magnetic
elements. The four Stokes profiles I, V, Q, U are obtained in each position along
the slit. Maps of about ten physical parameters, including field strength, inclination
to the vertical, azimuth angle, velocity, temperature, filling factor, etc, are derived
by inverting the four Stokes profiles in each pixel; a Milne-Eddington atmosphere
is assumed [64, 66]. The main results obtained so far on the IN magnetic field are
summarized below and compared with the properties of the network field.

Magnetic flux: in the range 5 × 1015–5 × 1016 Hx, for individual elements, one
order of magnitude smaller than in the network.

Field strength: less than 500 G, much weaker than the 1–2 kG network field.
Shape: horizontal as well as vertical magnetic fields are detected inside the net-

work, whereas only vertical fields are observed in the network. The vertical fields
are located in intergranular lanes, while the horizontal fields are mainly found inside
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granules. This suggests that the IN field is made with small � loops, closely related
to granules, which thus appears much different from the network field, which is made
of vertical, strong flux tubes, located in intergranular lanes.

The cross-section of the IN elements is less than 200 km, like for the network
elements.

Timescale: the timescale of both the IN and network fields is of the order of the
granulation lifetime: a few minutes.

Association with G- Band and CaII brightenings: contrary to the Network ele-
ments, there are no CaII brightenings associated with IN elements. Concerning
G-Band brightenings, only the brightest IN elements located at the boundaries of
mesogranules, can be associated with detectable magnetic flux.

2.3.7 Hidden Turbulent Flux

Close to the solar limb, the resonant photospheric lines are linearly polarized due
to scattering of photons. The presence of a weak turbulent magnetic field reduces
the degree of linear polarization [67]. This effect is known as the Hanlé effect. The
strength of the depolarizing turbulent magnetic field of mixed polarity was estimated
to 30 G [68, 69]. Later, comparing the depolarization in the weak C2 lines of the
Zwan system and in the resonant line SrI 4,607, Trujillo Bueno et al. [70] concluded
that hidden (hidden because not spatially resolved) fields of 10 G are associated with
the plasma of the center of granules and stronger fields, of the order of 200 G, in
intergranular lanes. This picture fits relatively well with the IN granular field, and
may correspond to the Stenflo’s and Faurobert-Scholl’s turbulent field.

2.3.8 Numerical Simulations of Small-Scale Magneto-Convection

The magneto-convection we are interested here works at the scale of the granulation
and has to be distinguished, of course, from the large-scale magneto-convection
which drives the solar cycle.

Initially, the simulation is set up as a purely hydrodynamical convection, like one
of those mentioned in Sect. 2.2.5, starting from a plane-parallel model, extending,
for example 800 km below to 600 km above the level of continuum optical depth
unity. The horizontal size of the box is typically 6,000 km in each direction, with
a resolution grid of 100 × 288 × 288 pixels. Radiative transfer, which is the main
driver of convection and has an important influence on the temperature structure
and brightness of the magnetic field concentrations, is taken into account, as well
as partial ionization, which strongly affects the efficiency of convective transport.
After convection is fully developed, a magnetic field is inserted in various forms: a
uniform horizontal field of 30 G [71]; a uniform vertical field of strengths varying
from 0 to 200 G [26]; a uniform vertical field of 200 G [28]; a twisted flux tube
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Fig. 2.24 Maps of physical quantities for a snapshot from the run with 200 G average vertical
magnetic field obtained by Shelyag et al. [27]. Upper left: vertical component of the magnetic field
at the level τ = 1 at 5, 000 Å, corresponding to the visible solar surface. The image shows magnetic
flux concentrations in the intergranular lanes. Upper right: vertical component of the velocity at the
level τ = 1 at 5, 000 Å. Positive (negative) values correspond to downflows (upflows). Lower left:
gas temperature on the level τ = 1 at 5, 000 Å. There are local enhancements of the temperature
in the regions of strong magnetic field in intergranular lanes.Lower right: normalized continuum
intensity at 4,300 Å. The image shows brightenings in the magnetic flux concentrations, which
closely correspond to the local temperature enhancements and magnetic flux concentrations

of various field strengths and various twist wavelengths, emerging from below the
photosphere [72]. In fact,the results from these models are all very similar. convective
motions produce highly intermittent magnetic fields in the intergranular lanes that
collect over the boundaries of the underlying mesogranular scale cells. The process of
flux expulsion from granules and convective field amplification lead to a dichotomy
of strong, mainly vertical fields embedded in the granular downflow network, and
weak, randomly oriented fields filling the hot granular upflows. The strong fields
form a magnetic network with thin, sheet-like structures extending along downflow
lanes (Figs. 2.24, 2.25), which somewhat differs from the observed pattern, which is
made not only with sheets, but also with many roundish aligned features (Fig. 2.26),
especially in the quiet Sun. At the visible surface around optical depth unity, the
strong field concentrations are in pressure balance with their weakly magnetized
surroundings and reach field strengths of up to 2 kG, strongly exceeding the values
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Fig. 2.25 Results from a numerical simulation by Vögler et al. [28], showing the distribution of the
magnetic field lines. The simulation was started with a 200 G uniform vertical magnetic field

corresponding to equipartition with the kinetic energy density of the convective
motions (which is 600 G only).

Simulated images of the emergent intensity smoothed by the diffraction of the
telescope and by the degradation by the Earth’s atmosphere resembles the observed
images taken with the same resolution (Fig. 2.26). The observed magnetic elements
are well reproduced by the simulations, but not their spatial distribution: in the real
quiet Sun, strong fields are found at the boundaries of supergranules; but in the
simulations, they form a pattern of mesogranular scale (where, in fact, the fields
are observed to have only moderate strengths). The simulations thus appear to be
representative of active regions rather than of the quiet Sun. Moreover, the appearance
of a strong flux pattern at mesogranular scales may be artificially due to the size of
the computational box, which is just a little larger than a mesogranule.
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Fig. 2.26 Simulated and observed G-Band images (from Shelyag et al. [27]). Left: synthetic G-
Band image of the simulated area after smoothing by the function mimicking the diffraction by
the telescope and the image degradation by the Earth’s atmosphere. Right: observed G-Band image
with a similar area fraction of G-Band bright points as in the 200-G simulation (subfield of an image
taken with the Dutch Open Telescope on La Palma, courtesy: P. Sütterlin)

2.3.9 Small-Scale Dynamo: A Possible Origin of the Small-Scale
Magnetic Field

The small-scale magneto-convection we were dealing with in Sect. 2.3.8, concen-
trates a weak pre-existing magnetic field in intergranular lanes. It is just a redistrib-
ution of magnetic flux from larger to smaller scales, without production of magnetic
energy. On the contrary, in small-scale dynamos, a very weak seed magnetic energy is
amplified exponentially by non-linear effects which occur in turbulent convection, to
reach a significant fraction of the kinetic energy. However, the physical mechanisms
at work here are not fully understood yet. Two different models have been developed
so far, by Cattaneo and co-workers [26, 73] and by Vögler and Schüssler [74]. The
Cattaneo and al’s model is not realistic, because the atmosphere is incompressible
and the computational box is closed; but the idealized numerical experiment helps
to isolate and understand the physical processes which are involved. Vögler and
Schüssler developed a more realistic model, with a compressible atmosphere and
an open box, but is is difficult to interpret the results. In both simulations a weak
bipolar magnetic field (10 mG) with nul net flux, is inserted when the simulated
convection is well developed. Soon after, the flow acts as a turbulent dynamo, gen-
erating a small-scale disordered magnetic field, with no net flux through the box.
The unsigned mean magnetic density at the level τ = 1 reaches a value of about
25 G. The resulting field exhibits an intricate small-scale mixed-polarity structure.
The strongest magnetic features reach occasionally vertical field strengths beyond
1 kG near τ = 1 (Fig. 2.27).
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Fig. 2.27 Snapshot from a dynamo run, taken 5 h after introducing the seed field. The vertically
emerging intensity (brightness, left panel) reveals a normal solar granulation pattern. The other
panels show the vertical component of the magnetic field on two surfaces of constant optical depth,
τ. Near the visible surface (middle panel, τ = 1, grey scale saturating at ±250 G), the magnetic
field shows an intricate small-scale pattern with rapid polarity changes and an unsigned average flux
density of 25 G. About 300 km higher, at the surface τ = 0.01 (right panel), grey scale saturating
±50 G), the unsigned average flux density has decreased to 3.2 G and the field distribution has
become considerably smoother, roughly outlining the network of intergranular downflow lanes
(darker area on the left panel) (from Vögler [74])

2.3.10 Origin of the Photospheric Network

The Quiet-Sun photospheric network decays in canceling collisions between mag-
netic concentrations of opposite polarities. The origin of the flux which compensates
this decay is still unclear, although diffusion of magnetic flux emerged in Ephemeral
Active Regions (ERs) is the most accepted one. ERs are small bipolar active regions,
10′′–20′′ of extension and 3 × 1019–1 × 1020 Hx of flux, which emerges frequently
through the solar surface, at all latitudes. Their lifetime is of the order of one day.
They are exclusively made with bright magnetic elements, without any dark sunspot
nor pore. The origin of the ER population is not very clear yet. Many speculate that
the ER flux originates close to the surface, forming as a consequence of the vigorous
convective motions present in the near-surface layers of the convection zone [75–
77]. But ERs may also be decay products of active regions, either sheared off on
emergence, or in the aging process of large bipolar regions. It is also possible that
both of these processes contribute to the formation of ERs, since as much flux may
erupt in the form of small ERs as in large active centers. Owing to the properties of
the photospheric network (fairly homogeneous distribution on the solar surface and
weak dependence of the phase of the sunspot cycle), ERs appear as a better candidate
to feed it. The flux emerging in this form is dispersed by supergranular advection
and large scale circulation.

Alternatively, it has been suggested that the origin of the photospheric network
is the IN magnetic flux generated by a local dynamo at the granulation scale of flux
of the order of 1015 Mx per element. The IN flux is advected first to the mesogran-
ular boundaries, where the flux is concentrated to 1016 Mx per element, then to the
supergranular boundaries where it is concentrated to still higher flux, of the order of
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1017 Mx. The total IN flux integrated over the solar surface represents a significant
fraction of the flux in the network. In fact both sources of flux, ER and IN, can
contribute to maintain the network.

2.3.11 Conclusion

Among the three dynamical patterns observed at the surface of the Sun, the origin
of the granulation is well understood, on the basis of the observed properties and of
the results of numerical simulations, which reproduce most of them satisfactorily,
although the viscosity of the numerical plasma is much larger than the real one: it is a
convective pattern driven by surface radiative cooling. Concerning the mesogranula-
tion, the observed properties are those of convective cells. In numerical simulations,
a convective flow pattern of mesogranular scale appears below the surface, which
could be associated with the observed mesogranulation. Its origin could thus be
convective, as a simple extension to deeper layers of the convection driven by the
surface cooling. This is supported by the fact that there are no two distinct peaks
corresponding to the scales of granules and mesogranules in the power spectrum
of photospheric velocities. Some observational properties of the mesogranulation
could suggest they are of convective origin too; this is supported by some recent
numerical simulations [31, 32] The simulations, primarily devoted for investigating
granulation and mesogranulation, have been extended to the size of supergranules
(but at the expense of granules, which are badly resolved), and show that the scale of
the developed cells increases smoothly from the granulation scale at the optical depth
unity (which simulates the solar surface), to the supergranulation scale at the bottom
of the simulated domain, 20 Mm below the surface. Large cells advect the smaller
cells above, as observed at the real solar surface (where granules are advected by
mesogranules, which are advected, in their turn, by supergranules). The mesogran-
ulation thus seems to be of convective origin, indirectly driven by surface radiative
cooling. The convective origin proposed by Leighton in the sixteen’s, which was later
discarded by most authors, could be the true nature of the solar supergranulation; but
the driving force beeing a surface radiative cooling instead of HeII recombination as
believed by Leighton. There is a problem, however, with this interpretation, because
the power spectra of vertical and horizontal flows observed at the solar surface, have
a distinct peak at the supergranulation scale, which is not expected in the case of a
smooth size increase of the convective cells with depth. Alternatively to convection,
it has been suggested that supergranules could result from non linear interactions
between granules or between downflow plumes, or could be driven by the magnetic
network.

Recent high spatial resolution and high polarisation sensitivity observations per-
formed with ground based telescopes and with the Solar Optical Telescope on board
the satellite HINODE, have revealed the complexity of the magnetic field in the
quiet photosphere. In the same time, the development of realistic numerical simula-
tions (except for the viscosity, which is much higher than in the solar atmosphere)



2 The Quiet Solar Photosphere: Dynamics and Magnetism 117

allows us to better understand the physical processes which generate the magnetic
field at the surface, or regenerate magnetic debris from active regions, and further
concentrate the field in intergranular lanes. However, much remains to be done in
order to establish quantitatively reliable results of near-surface local dynamo action.
This includes studying the effects of deeper and wider computational boxes as well
as variations of the boundary conditions.

Magnetic field is now found everywhere in the quiet Sun, in different forms.
At the boundaries of supergranules, it is concentrated in vertical tubes of kG field
strengths, and of diameters smaller, or even much smaller, than a few hundreds
kilometers, located in intergranular lanes. The flux in the network is believed to be
concentrated by a so-called convective collapse process. It is also ubiquitous inside
supergranules, where the so-called Intranetwork field consists of small loops of lower
strength (hectoGauss) and of lower flux (one or two orders of magnitude lower than
in the network), closely related to granules; the vertical part of the loop is anchored
in intergranular lanes and are connected through granules. The time scale of the
network and internetwork fields is closely related to the time evolution of granules,
which is less than 10 min. It is not clear yet whether the granular field is locally
generated by a fast local dynamo action, or is emerging from deeper layers as small
dipoles or as debris from decaying active regions.

The ubiquitous presence of small-scale magnetic field in surface layers may affect
the propagation of surface or near-surface waves propagation and this has to be taken
into account when deriving informations from the wave properties. It would also be
interesting to know how much magnetic flux is contained in the deeper layers, away
from active regions, and in which form.
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Chapter 3
Modeling and Prediction of Solar Cycles Using
Data Assimilation Methods

Irina N. Kitiashvili and Alexander G. Kosovichev

Abstract Variations of solar activity are a result of a complicate dynamo process in
the convection zone. We consider this phenomenon in the context of sunspot number
variations, which have detailed observational data during the past 23 solar cycles.
However, despite the known general properties of the solar cycles a reliable forecast of
the 11-year sunspot number is still a problem. The main reasons are imperfect dynamo
models and deficiency of the necessary observational data. To solve this problem we
propose to use data assimilation methods. These methods combine observational data
and models for best possible, efficient and accurate estimates of physical properties
that cannot be observed directly. The methods are capable of providing a forecast of
the system future state. It is demonstrated that the Ensemble Kalman Filter (EnKF)
method can be used to assimilate the sunspot number data into a non-linear α−�
mean-field dynamo model, which takes into account dynamics of turbulent magnetic
helicity. We apply this method for characterization of the solar dynamo properties
and for prediction of the sunspot number.

3.1 Introduction

A thoughtful investigation of a natural phenomenon consists of three basic parts:
observation, construction of a model and prediction. Predictions based on a model
determine correctness of our understanding of the physical processes. Because obser-
vation data contain errors, and a model constructed on their basis is characterized by
some approximations, a prediction of the next set of observations will deviate from

Irina N. Kitiashvili (B)
Center for Turbulence Research (CTR), Stanford University, Stanford CA 94305 , USA
e-mail: irinasun@stanford.edu

Alexander G. Kosovichev
Stanford University, Stanford CA 94305 USA
e-mail: sasha@sun.stanford.edu

J.-P. Rozelot and C. Neiner (eds.), The Pulsations of the Sun and the Stars, 121
Lecture Notes in Physics 832, DOI: 10.1007/978-3-642-19928-8_3,
© Springer-Verlag Berlin Heidelberg 2011



122 I. N. Kitiashvili and A. G. Kosovichev

1775 1800 1825 1850 1875 1900 1925 1950 1975 2000
0

50

100

150

200

250

su
ns

po
t n

um
be

r

years

0

50

100

150

200

250

(a) (b)

Fig. 3.1 Observed monthly sunspot number series a for 1755–2007 from NGDC, and b for three
solar cycles 14 (gray curve), 19 (black curve) and 23 (dotted curve), which are aligned according
to their maxima (t = 0)

the real data. Nevertheless, an estimate of the uncertainties in the model and obser-
vations allows us to correct the model solution according to the information obtained
from new measurements. Thus, updated observational data and a consistent correc-
tion of the model solution allow us to more accurately describe the system’s behavior
and forecast its future state. This procedure also provides additional information for
system parameters that are difficult to observe directly.

In this paper, we discuss an application of the Ensemble Kalman Filter method
(EnKF) to a simple non-linear dynamo model for analysis of the solar activity cycles
[1, 2]. One of manifestations of solar magnetic activity is the 11-year sunspot cycle
(Fig. 3.1a), which is characterized by fast growth and slow decay of the sunspot
number parameter (Fig. 3.1b). For modeling the solar cycle we use a non-linear
α−� dynamo model [3], which takes into account temporal variations of turbulent
magnetic helicity.

3.2 Formulation of the Dynamo Models

3.2.1 Parker’s Migratory Dynamo

In a kinematic approximation, the dynamo problem can be described by the induction
equation [4]

∂B
∂t

= ∇ × (v × B)− ηm∇2B, (3.1)

where B is the magnetic field strength, v is the fluid velocity, ηm is the molecular
magnetic diffusivity. Magnetic field, B, and the fluid velocity, v, can be separated into
two components representing mean and fluctuating (turbulent) parts, or B = 〈B〉+b
and v = 〈v〉+u. Here, 〈B〉 represents the longitudinally averaged magnetic field, b is
the fluctuating part of B, 〈v〉 represents mean global-scale motions in the Sun (such
as the differential rotation, and u is the velocity of turbulent convective motions.
Taking into account that the average of fluctuations is zero, 〈b〉 = 0 and 〈u〉 = 0,



3 Modeling and Prediction of Solar Cycles Using Data Assimilation 123

for the case of isotropic turbulence, we obtain the following mean-field induction
equation [5]

∂〈B〉
∂t

= ∇ × (〈v〉 × 〈B〉 + α〈B〉 − η∇ × 〈B〉) (3.2)

where η describes the total magnetic diffusion, which is the sum of the turbulent
and molecular magnetic diffusivity, η = ηt + ηm (usually ηm � ηt ). Parameter
α is turbulent fluid helicity. The first term of the equation describes transport of
magnetic field lines with fluid, the second term describes the α-effect, and the last
term determines diffusion and dissipation of the field.

For describing the average magnetic field, following [4], we choose a local coor-
dinate system, xyz, where z represents the radial coordinate, axis y is the azimuthal
coordinate and axis x coincides with co-latitude. Effects of sphericity are not in-
cluded in this model. Hence, the vector of the mean field, 〈B〉, can be represented as

〈B〉 = B(x, y)ey + ∇ × [
A(x, y)ey

]
, (3.3)

where B(x, y) is the toroidal component of magnetic field, A(x, y) is the vector-
potential of the poloidal field. Assuming that 〈v〉 = υy(x)ey (rotational component),
we can write the dynamical system describing Parker’s model of the α−� dynamo
[4] in the standard form:

∂A

∂t
= αB + η∇2 A,

∂B

∂t
= G

∂A

∂x
+ η∇2 B, (3.4)

where G = ∂〈υy〉/∂z is the rotational shear.
Assuming that the coefficients are constants and seeking a solution of the model

in the form (A, By) ∼ (A0, B0) exp[i(kx − ωt)], we find a well-known result that
a pure periodic solution exists if D = αG/(η2k3) = 2, where D is the so-called
“dynamo number”. The solutions grow in time for D > 2, and decay for D < 2.

For the periodic dynamo solutions toroidal and poloidal field components vary in
time in a sinusoidal fashion which is clearly different from the observed, asymmetric
profile of the solar cycle (Fig. 3.1b). As shown in [2], in the one-mode approxima-
tion the classical Parker’s dynamo model gives only periodic oscillatory solutions,
and therefore cannot explain the observed variations of the sunspot number in the
solar cycles. For creating chaotic variations of the magnetic field in the low-mode
approximation it is necessary to add to the Parker’s model a third equation describing
variations of the magnetic helicity and its interaction with the large-scale magnetic
field [3, 6].

3.2.2 The Kleeorin–Ruzmaikin Model

For modeling the solar cycle we choose the formulation [3], which is based on
the idea of magnetic helicity conservation, and has reasonable agreement with the
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observational data of solar magnetic fields [7, 8]. Due to the fact that the kinetic he-
licity makes the magnetic field small-scaled, the back influence on the turbulent fluid
motions can restrict the unlimited growth of the magnetic field. In the mean-field
approach the magnetic helicity is separated into large- and small-scale components.
Because of conservation of the total helicity, a growth of the large-scale magnetic
helicity due to the dynamo action is compensated by the growth of the small-scale he-
licity of opposite sign [8]. Thus, small- and large-scale magnetic fields grow together
and are mirror-asymmetrical. This means that the condition of magnetic helicity con-
servation is, perhaps, more severe for restricting the dynamo action than the condition
of the energy conservation.

The turbulent helicity can be divided into two parts: hydrodynamic and magnetic:
α = αh + αm . The kinetic helicity, αh, describes helical turbulent fluid motions; the
magnetic helicity, αm, determines the order of twisted magnetic field lines:

αh = −τ 〈u · (∇ × u)〉/3, αm = τ 〈b · (∇ × b)〉/(12πρ), (3.5)

where τ is the lifetime of turbulent eddies, ρ is density.
It is convenient to define the influence of the magnetic helicity on magnetic field

using spectral density χ [3]

χ̄ ≡ 〈a · b〉, (3.6)

where a is the fluctuating part of the magnetic field vector-potential, A.
To derive an equation for the averaged helicity density we multiply the basic

induction (3.1) written without the differential rotation term by the fluctuating part
of the vector potential, a; and also multiply the equation for the vector-potential

∂A
∂t

= v × B − ηm∇ × ∇ × A, (3.7)

by the fluctuating part of magnetic field, b. Averaging the sum of (3.1) and (3.7),
and taking into account that b = ∇ × a, after some transformations we obtain the
following expression for the helicity density [2, 3]

∂χ̄

∂t
=

〈
a · ∂b

∂t
+ b · ∂a

∂t

〉
= −2〈[v × b] · 〈B〉〉 − 2ηm〈b · ∇ × b〉. (3.8)

Two terms, 〈� [a × [v × 〈B〉]]〉 and 〈� [a × [v × b]]〉, disappear as a result of vol-
ume averaging. Using the mean-field electrodynamics approximation and retaining
only the first two terms for the mean electric field [5]

ε ≡ 〈v × b〉 ∼= α〈B〉 − η (∇ × 〈B〉) , (3.9)

we obtain

∂χ̄

∂t
= 2

(
η〈B〉 · (∇ × 〈B〉)− α〈B〉2 − ηm〈b · ∇ × b〉

)
. (3.10)
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Then, the expression for variations of the magnetic helicity, αm, in terms of the
mean magnetic field is the following [3]:

∂αm

∂t
= Q

2πρ

[
〈B〉 · (∇ × 〈B〉)− α

η
〈B〉2

]
− αm

T
, (3.11)

where coefficient Q ∼ 0.1, T is the characteristic time for magnetic diffusion.
Equation (3.11) is written for the case of uniform turbulent diffusion, and when the
magnetic Reynolds number is large, η ≈ ηt .

For further analysis of the Kleeorin–Ruzmaikin model, we transform (3.4) and
(3.11) into a non-linear dynamical system in non-dimensional variables. Following
the approach of [9] we average the system of (3.4) and (3.11) in a vertical layer to
eliminate z-dependence of A and B and consider a single Fourier mode propagating
in the x-direction assuming A = A(t)eikx , B = B(t)eikx ; then we get the following
system of equation

dA

dt
= αB − ηk2 A,

dB

dt
= ikG A − ηk2 B,

dαm

dt
= −αm

T
− Q

2πρ

[
−ABk2 + α

η

(
B2 − k2 A2

)]
. (3.12)

This transformation allows us to investigate more easily various non-linear
regimes, from periodic to chaotic, and obtain relationships of the basic properties,
such as the cycle growth and decay times, duration and amplitude. Note that the for-
mulation and the interpretation of solutions of the simplified system are not straight-
forward because it does not adequately describes non-linear coupling of the spatial
harmonics. For simplicity we retain only the second harmonic (k = 2), which has
the largest growth rate among the antisymmetric solutions.

To relate the dynamo model solutions to the observations we used Bracewell’s
definition [10, 11] of the sunspot number in the form W ∼ B(t)3/2, where B(t) is
the toroidal magnetic field component. We note that the solutions of the dynamical
system are qualitatively similar for the different harmonics. Nevertheless, we choose
the parameters, which correspond to the solar situation.

Making the following substitutions: A = A0 Â, B = B0 B̂, t = T0 t̂, k = k̂/r
(r is a layer radius), T0 = 1/(k2η) and αm = α0α̂m, and taking into account that
A0 = B0ηk/G, we obtain:

d Â

dt̂
= D̂ B̂ − Â,

d B̂

dt̂
= i Â − B̂,

dα̂m

dt̂
= −να̂m +

[
Â B̂ − D̂

(
B̂2 − λ Â2

)]
, (3.13)

where D̂ = D0α̂ and α̂ = α̂h + α̂m are the non-dimensional dynamo number
and total helicity, D0 = α0Gr3/η2, α0 = 2Qkυ2

A/G, υA is the Alfvén speed, ν
is the ratio of the characteristic times of turbulent and magnetic diffusion [3] and
λ = (k2η/G)2 = Rm−2, and Rm is the magnetic Reynolds number.



126 I. N. Kitiashvili and A. G. Kosovichev

185 190 195
t

-2

-1

1

2

185 190 195
t

-1.5
-1.0
-0.5

0.5
1.0
1.5

B

185 190 195
t

-4

-3

-2

-1

1

m

A

188 190 192 194 196 198
t

0.5

1.0

1.5

2.0

W

(a) (b)

(c) (d)α

Fig. 3.2 Variations of the magnetic field for the middle convective zone αh D0 = −2: ν = 1.28,
αh = 2.439, D0 = −0.82 for different initial conditions: B0 = 4i, A0 = −0.01i (dotted curve),
B0 = 4i, A0 = −i (dashed curve) and B0 = 1 + 4i, A0 = −i (solid curve): a toroidal component,
B; b vector-potential, A, of the poloidal magnetic field; c magnetic helicity variations, αm; d
evolution of the model sunspot number, W

3.2.3 Periodic and Chaotic Solutions

In order to estimate the range of parameters of the Kleeorin–Ruzmaikin model (3.12)
and for modeling the solar cycle, we use the standard model of the interior structure
rotation of the Sun for the top, bottom and middle areas of the convective zone [12].
The key parameter of the model is the dynamo number D = D0αh, because its mag-
nitude determines behavior of the magnetic field, which depends on the rotational
velocity and magnetic field strength. According to [2] for the Kleeorin–Ruzmaikin
model, given by (3.12), the linear instability condition is also |D| ≡ |αh D0| > 2.
However, in this case the profile of the periodic solutions is not sinusoidal, and
depends on the initial conditions, A0 and B0. For higher initial values of these
parameters the amplitude of non-linear oscillations in the stationary state is higher.
However, the shapes of the oscillation profiles are similar.

Figure 3.2 illustrates solutions for the model of Kleeorin–Ruzmaikin, and the
corresponding variations of the sunspot number for different initial conditions. As
mentioned, different initial values for magnetic field components A0 and B0 lead to
very similar profiles. In high amplitude cases, dual peaks may appear in variations of
the vector potential, A, of the poloidal field. The evolution of the magnetic helicity
shows a relatively slow growth followed by a sharp decay [2]. The helicity has
maxima when the toroidal field is zero. In these calculations the value of parameter ν,
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Fig. 3.3 Example of chaotic solutions for parameters of the middle convective zone: a toroidal
component of magnetic field B, b vector–potential, A, c magnetic helicity αm and d model sunspot
number W

which describes the damping rate of magnetic helicity and depends on the turbulence
spectrum and dissipation though helicity fluxes, is of the order of unity. Finally, the
variations of the sunspot number, W , with the amplitude increase are characterized
by higher peaks and shorter rising times (see Fig. 3.2d). Note that in the sunspot
number profile we can recognize the well-known general properties of the sunspot
number profile with a rapid growth at the beginning of the cycle and a slow decrease
after the maximum.

With the increase of |αh D0| (|αh D0| > 2) the profile of magnetic field varia-
tions continues to deform and can become unstable with very steep variations of the
magnetic field. The solution can be stable again if we enhance the back reaction by
increasing the quenching parameter. We use the following quenching formula for the
kinetic part of helicity, αh, α = αh/(1 + ξ B2)+ αm [6]. Thus we can always obtain
periodic solutions for sufficiently strong ξ .

The transition from periodic to chaotic solutions occurs when the dynamo number,
|αh D0|, increases above a certain value. In the transition regime the cycle amplitude
becomes modulated: it slowly increases with time, and then suddenly and very sharply
declines, and then starts growing again [2].

In the case of significant deviations from the condition of linear stability, the
solutions become chaotic for all variables of the dynamical system. Figure 3.3
shows an example of chaotic variations for the middle convective zone parameters:
ν = 1.28, λ = 1.23 × 10−6, D0 = −0.82, αh = 3.2, ξ = 3.9 × 10−3, for the mag-
netic field components, the magnetic helicity and the sunspot number parameter. In
the chaotic solutions, peaks of the toroidal magnetic field, B (Fig. 3.3a) strongly cor-
relate with peaks of the vector-potential, A, and the magnetic helicity, αm, (Fig. 3.3b,
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c). The growth of the toroidal field also leads to strengthening of the poloidal field
and strong fluctuations of the magnetic helicity.

Now we can see from Figs .3.2d and 3.3d that the profiles of the model sunspot
number variations qualitatively describe the mean profile of the solar cycles. The next
important characteristic of the solar cycles is the relationship between the amplitude
and the growth time. This relationship is shown for some periodical solutions in
Fig. 3.4a, four chaotic solutions in Fig. 3.4b and properties for the real 23 solar cycles
in Fig. 3.5. The time scales are non-dimensional. Figure 3.5 shows the observed
amplitude-growth time properties of the solar cycles of 1755–2007. Thus, all three
panels demonstrate that the growth time is shorter for stronger cycles.
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3.3 Data Assimilation Methods

In the previous section we obtained a solution for the dynamical system, which
qualitatively reproduces the basic properties of the solar cycle. In this section we
adapt the non-linear periodic solution for describing the sunspots number series
using data assimilation methods.

3.3.1 Basic Formulation

The main goal of any model is an accurate description of properties of a system in
the past and present times, and prediction of its future behavior. However, a model
is usually constructed with some approximations and assumptions, and contains
uncertainties. Therefore, it cannot describe the true condition of a system. On the
other hand, observational data, d, also include errors, ε, which are often difficult to
estimate. Data assimilation methods such as the Kalman Filter [13] allow us, with
the help of an already constructed model and observational data, to determine the
initial state of the model that is in agreement with a set of observations, and obtain
a forecast of future observations and an error estimate [14, 15]. For instance, in our
case we know from observations the sunspot number (with some errors) and want to
estimate the state of solar magnetic fields, described by a dynamo model.

Generally, if the state, ψ , of a system can be described by a dynamical model
dψ/dt = g(ψ, t) + q, with initial conditions ψ0 = �0 + p, where g(ψ, t) is a
non-linear vector-function, q and p are errors of the model and initial conditions.
Then, the system forecast is ψ f = ψ t + φ, where ψ t is the true system state, and
φ is the forecast error. The relationship between the true state and the observational
data is given by a relation d = M[ψ] + ε, where d is a vector of measurements,
M[ψ] is a measurement functional.

For a realization of the data assimilation procedure in the case of non-linear
dynamics, it is convenient to use the EnKF method [14, 16]. The main difference
of the EnKF from the standard Kalman Filter is in using an ensemble of possible
states of a system, which can be generated by Monte Carlo simulations. If we have
an ensemble of measurements d j = d + ε j with errors ε j (where j = 1, . . . , N ),

then we can define the covariance matrix of the measurement errors Ce
εε = εεT ,

where the overbar means the ensemble averaged value, and superscript T indicates
transposition. Using a model we always can describe future states of a system, ψ f .
However, errors in the model, initial conditions and measurements do not allow the
model result be consistent with observations. To take into account this deviation, we
consider a covariance matrix of the first-guess estimates (our forecast related only to

model calculations): (Ce
ψψ)

f = (ψ f − ψ f )(ψ f − ψ f )T . Note that the covariance
error matrix is calculated for every ensemble element. Then, the estimate of the
system state is given by:
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ψa = ψ f + K
(

d − Mψ f
)
, (3.14)

where K = (Ce
ψψ)

f MT
(

M(Ce
ψψ)

f MT + Ce
εε

)−1
, is the so-called Kalman gain

[13, 14]. The covariance error matrix of the best estimate is calculated as (Ce
ψψ)

a =
(ψa − ψa)(ψa − ψa)T = (I − Ke M) (Ce

ψψ)
f . We can use the last best estimate

obtained with the available observational data as initial conditions and make the next
forecast step. At the forecast step, we calculate a reference solution of the model,
according to the new initial conditions, then simulate measurements by adding errors
to the model and to the initial conditions. Finally we obtain a new best estimate of the
system state, which is our forecast. A new set of observations allows us to redefine
the previous model state and make a correction for the predicted state.

3.3.2 Implementation of the Data Assimilation Method

For assimilation of the sunspot data into the dynamo model, we select a class of non-
linear periodic solutions, which correspond to parameters of the middle convective
zone and describe the typical behavior of the observed sunspot number variations
(Fig. 3.2d). Implementation of the EnKF method consists of three steps [1]: prepara-
tion of the observational data for analysis, correction of the model solution according
to observations, and prediction.

Step 1: Preparation of the observational data. Following [10, 11], we transform
the annually averaged sunspot number for the period of 1856–2007 into the toroidal
field values using the relationship B ∼ W 2/3 while alternating the sign of B. We also
select the initial conditions of the model such that the reference solution coincides
with the beginning of the first cycle in our series, cycle 10, which started in 1856. We
do not consider the previous solar cycles because of uncertainties in the early sunspot
number measurements. Then we normalize the toroidal field in the model in such a
way that the model amplitude of B is equal to the mean toroidal field calculated from
the sunspot number. In addition, we normalize the model time scale assuming that
the period of the model corresponds to the typical solar cycle duration of 11 years.

Step 2: Assimilation for the past system state. Unfortunately we do not have ob-
servations of the magnetic helicity, and the toroidal and poloidal components of the
magnetic field. Therefore, in the first approximation, we generate observational data
as random values around the reference solution with a standard deviation of ∼12%,
which was chosen to roughly reproduce the observed variations of the sunspot num-
ber. Then, we calculate the covariance error matrixes of the observations, Ce

εε, and
the forecast, (Ce

ψψ)
f . After combining the observation and model error covariances

in the Kalman gain, K , we obtain the best estimate for the evolution of the system,
ψa from (3.14) (Fig. 3.6, first half). Figure 3.7 shows the result of assimilation of
the sunspot data into the dynamo model: the best EnKF estimate (black curve), the
initial model (gray curve) and the actual sunspot data (circles).
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Fig. 3.6 Scheme of the data assimilation procedure. (Dashed curves) show exact solutions of a
model, (thin solid curves) describe the first correction of a model according to observations, (thick
curves) are the best estimate of an observable system state. (Gray) and (black colors) indicate estima-
tions for past and forecast states. (Black) and (empty circles) mean real and simulated observations,
respectively
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Fig. 3.7 Results of assimilation of the annual sunspot number data (circles) into the dynamo model.
The (gray curve) shows the reference solution (without assimilation analysis), and the (black curve)
shows the best EnKF estimate of the sunspot number variations, obtained from the data and the
dynamo model

Step 3: Prediction. To obtain a prediction of the next solar cycle, we determine the
initial conditions from the best estimated solution for the previous cycle in terms of
the amplitude and phase to continue the model calculations. Then after receiving the
reference solution with the new initial conditions, we simulate future observational
data by adding random noise and repeat the analysis (Fig. 3.6, right). This provides
the best EnKF estimate of the future state of the system (forecast).

3.4 Reproducing and Predicting Observational Data
by the Ensemble Kalman Filter

As discussed early, for a successful application of the data assimilation method we
need: (1) a model, which reproduces a phenomenon as accurately as possible; (2) a
sufficiently long set of observational data.
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Fig. 3.8 Annual sunspot
data records from National
Geophysical Data Center
(NGDC), (empty circles) and
corrected data (black circles)
by Svalgaard (personal
communication, [18])
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Here, we use the simplified non-linear dynamo model (3.13), which can qualita-
tively reproduce the basic properties of a solar cycle (see Sect. 2.3) and the Zurich
sunspot data series from 1840 yr, when observations of sunspots became regular.
However, first observational data strongly varied among different observers [17, 18].
For this reason, we divide the sunspot series in two parts: (1) “early” data series
(1844–1915 yrs), and (2) the “modern” part (1915–present time).

3.4.1 Application Data Assimilation to Early Sunspot Data

Because of uncertainties there were many attempts to revise the early sunspot data
taking into account various historical and physiological facts. For example, using
information about sunspot observations, auroras, wine harvest and hailstorms, Fritz
[19] estimated the solar activity for the period of 188–1638.

Here we examine the data assimilation approach for “prediction” of “early” solar
cycles, when the distribution of the sunspot number is unclear. We use two annual
sunspot data sets: from the National Geophysical Data Center (NGDC) and the
sunspot data series corrected by Svalgaard [17, 18] for 1840–1920. In Fig. 3.8 we
show differences between these data records.

Then, by applying the data assimilation method we estimate variations of
the sunspot number for solar cycles 10–14. For this, we use information only for
the previous cycles. Figure 3.9 (panels a–e) illustrates results of the “predictions”
for the corrected data and the errors of the predicted cycle amplitudes and times of
the cycle maxima (panel e). In the plot the observed sunspot maxima are aligned at
t = 0. The corrected data (stars) give a better agreement between “predicted” and
actual cycle amplitudes than the NGDC data (circles). However, the accuracy of the
predictions of the solar maxima times is similar for both data sets. Note, that we get
a strong over-estimation in amplitude for cycle 12 for both data set, that perhaps may
indicate on missed data for this cycle.

http://dx.doi.org/10.1007/978-3-642-19928-8_2
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Fig. 3.9 Predictions for “early” solar cycles 10–14 (panels a–e). (Grey curves) show the assimilated
model data using the previous known data sets, (black curves) show the forecasts. (Filled and empty
circles) correspond to the simulated annual sunspot number and to the observed ones. Panel f shows
the errors of the predicted amplitudes and times of the solar maxima. In this panel the circles show
the errors for the NGDC data, and stars show the errors for corrected data [18]. Errors of the solar
maximum times are shown as deviation from the actual maxima in months

3.4.2 Prediction of the Last Solar Cycles

The described analysis also has been tested by calculating predictions of previous
“modern” cycles. Figure 3.10 shows examples of the EnKF method implementation
for forecasting the sunspot number of cycles 16–23. For these forecasts, we first
obtain the best estimated solutions using the observational data prior to these cycles.
We then compute the model solution (black dashed curves) according to the initial
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Fig. 3.10 Predictions for solar cycles 16–23. Black dashed curves show the model reference solu-
tion. Gray curves show the best estimate of the sunspot number using the observational data (empty
circles) and the model, for the previous cycles. Filled circles are simulated observational data. Black
curves show the prediction results

conditions of the time of the last measurement and simulate a new set observation
by adding random noise. Then, we obtain the EnKF estimates using the simulated
observations, which give us the prediction (Fig. 3.10, black curves).
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Fig. 3.11 Prediction for
solar cycle 24. Notations
same as in Fig. 3.10
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These experiments show that this approach can provide reasonable forecast of the
strength of the next solar cycles. However, there are significant discrepancies. For
instance, the strength of cycle 16 is over-estimated, and the strength of cycle 19 is
under-estimated. The main uncertainties are caused by inaccuracies in determining
the time of the end of the previous cycle from the sunspot number data, and by
the incompleteness of the model and insufficiency of the sunspot number data. In
particular, we found the forecast is inaccurate when the sunspot number change
significantly from the value of the previous cycle [1]. Also, our forecast experiments
show a strong dependence on the phase relation between the reference model solution
and the observations. The phase difference appears to be due to the constant period
of the model solution. Curiously, when the model phase is ahead of the solar cycle
phase, adding a data point at the start of the cycle substantially improves the forecast.
However, when the model phase lags, this does not happen. This effect is taken into
account by correcting the phase of a reference solution that it is slightly ahead of the
solar cycle phase.

The same analysis scheme is applied for predicting of the next solar cycle 24.
According to this result, solar cycle 24 will be weaker than the previous cycle by
approximately 30%. To test the stability of this prediction we used two other sets of
initial conditions in 2008 and obtained close results (Fig. 3.11).

3.5 Discussion and Conclusions

We have presented a numerical analysis of simple dynamical models describing the
non-linear behavior of two dynamo models, the classical Parker’s dynamo model with
the standard α-quenching and the model [3], which describes the evolution of the
magnetic helicity based on the balance between the large-scale and turbulent mag-
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netic helicities, shows the existence of non-linear periodic and chaotic solutions.
Using a low-order dynamical system approach we examine the influence of the
kinetic and magnetic helicities on the non-linear fluctuations of the dynamo-
generated magnetic field in the conditions of the solar plasma, and compare these
with the sunspot number variations observed during the solar 11-year cycles.

The analysis of the Kleeorin–Ruzmaikin model showed the existence of non-
linear periodic and chaotic solutions for conditions of the solar convective zone. For
this model we obtained profiles of the sunspot number variations, which qualitatively
reproduce the typical profile of the solar cycles.

The results of assimilation of the annual sunspot number data into the solar
dynamo model and the prediction of the previous solar cycles (Fig. 3.10) demon-
strate a new method of forecasting the solar activity cycles. The application of the
exam data assimilation approach to the historical data of cycles 10–14 shows a better
agreement for the corrected sunspot data [17, 18] than for the standard NGDC data in
terms of the cycle amplitudes. However, errors in the predictions of the cycle maxima
are similar for both data sets (Fig. 3.9).

Using the EnKF method and a simple dynamo model for “modern” sunspot data
record, we obtained reasonable predictions usually for the first half of sunspot cycles
with an error of ∼8–12%, and in some cases also for the declining phase of the
cycles. This method predicts a weak solar cycle 24 with a maximum of the smoothed
annual sunspot number of approximately 80 (Fig. 3.11). It is interesting to note that
the simulations show that the previous cycle does not finish in 2007 as was expected,
but still continues into 2008. According to the prediction, the maximum of the next
cycle will be reached approximately in 2013.

The application of the data assimilation method, EnKF, for modeling and predict-
ing solar cycles shows the power of this approach and encourages further develop-
ment. It also reveals significant uncertainties in the model and the data. Among these
are the uncertainties in the determination of the start of a solar cycle from the sunspot
number series (in particular, when the cycles overlap), leading to the uncertainty in
the phase relation between the model solution and the data. Also, there are significant
uncertainties in the relationship between the sunspot number data and the physical
properties of the solar magnetic field, in the absence of magnetic field and helicity
data, and, of course, in the dynamo model. Our conclusion is that for more robust
and accurate predictions of solar cycles, the information contained in the sunspot
number data is insufficient.
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Chapter 4
Amplitudes of Solar Gravity Modes

K. Belkacem

Abstract Solar gravity modes are mainly trapped inside the radiative region and
are then able to provide information on the properties of the central part of the Sun
granulation. However, there is no consensus on the detection of solar gravity modes
which remains a major challenge. In this paper, we discuss the underlying driving
and damping processes of solar g modes, and review the quantitative estimates of
their amplitudes. This issue is important since a theoretical determination of mode
amplitudes may help to design the track for gravity modes.

4.1 Motivations

Identification of the solar 5-min oscillations as global acoustic standing waves
(p modes) by Ulrich [1] and Leibacher and Stein [2] led to major improvements
of the knowledge of the Sun internal structure. Contrary to classical pulsators for
which only a few modes had been detected from the ground, the Sun pulsates with
million of modes. The resulting rich frequency spectrum allows to probe the internal
structure by means of inversion of the seismic data [3]. For instance, the sound speed
profile or the rotation profile were inferred, from the knowledge of frequencies, in
the whole Sun except near the core. Solar acoustic modes do not permit to get access
to the inner most region since their amplitudes in those layers are very small.

The potential of gravity modes in doing so had been recognized for many years.
Such modes are mainly trapped in the radiative region and are thus able to provide
information on the properties of the central part of the Sun (r < 0.3R�) [4]. Hence,
the track for the detection of g modes began more than 30 years ago. The first claims
of detection of solar gravity modes started with the works of Severnyi et al. [5]
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and Brookes et al. [6]. None of them were confirmed even after more than 10 years
of observations from SOHO [7]. Hence, the detection and identification of gravity
modes mode [7–11] to determine the rotation profile in the whole radiative core from
the tachocline to the nuclear region [12–14], remains one of the key issue in solar
physics.

As g modes are evanescent in the convective region, their amplitudes are expected
to be very low at the photosphere and above, where observations are made, making
their detection a challenge. In this framework, the theoretical determination of g
mode amplitudes is an important task since it can gives some indications about
the needed observational threshold to achieve. In addition, the investigation of g
mode amplitudes and the underlying involved physical mechanisms, i.e. driving
and damping processes, gives informations on the dynamical properties of the Solar
convective region. Amplitudes of g modes, as of p modes, are believed to result from
a balance between driving in the solar convection zone and damping processes. Two
major processes have been identified as stochastically driving the resonant modes
in the stellar cavity. The first is related to the Reynolds stress tensor, the second is
caused by the advection of turbulent fluctuations of entropy by turbulent motions.
Theoretical estimations based on stochastic excitation have been obtained by Gough
[15], Kumar et al. [16], and Belkacem et al. [17]. We also note that penetrative
convection is thought to be an another possible excitation mechanism [18, 19], as
well as other mechanisms such as mode coupling [20–24], or excitation by magnetic
torques [25].

This lecture aims at explaining the main features of mode driving and damping
of solar gravity modes by turbulent convection. In Sect. 4.2, the basic properties
of solar g modes, which are of interest in regard to their amplitudes, are outlined.
Section 4.3 is dedicated to the presentation of the driving by turbulent convection
and damping processes while Sect. 4.4 emphasizes quantitative results obtained for
g mode amplitudes. In Sect. 4.5 we discuss another likely excitation mechanism, i.e.
penetrative convection. Section 4.6 is dedicated to conclusions.

4.2 Basic Properties of Solar Gravity Modes

In this first section, we present some basic properties of solar g modes. In doing so,
we emphasize their peculiar behavior, which is an advantage since they probe the
internal layers of the Sun but also a difficulty for their detection.

4.2.1 Dispersion Relation of Gravito-Acoustic Modes

Let us write the governing equations of the fluid motion, neglecting the effect of
molecular viscosity, rotation as well as magnetic field
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∂ρ

∂t
+ ∇ · (ρu) = 0, (4.1)

∂ρu
∂t

+ ∇ : (ρuu) = ρg − ∇ p, (4.2)

ρT
ds

dt
= −∇ · F + ε (4.3)

where ρ is the density, u the velocity field, p the pressure, g the gravitational accel-
eration, T temperature, s the specific entropy, ε an external source of energy, and F
the radiative flux.

To establish the equations governing the oscillatory motion, the scalar and vec-
torial fields are split into an equilibrium and a fluctuating part associated with the
oscillations, such as

y = y0 + y′ (4.4)

∣∣y′∣∣ � |y0| (4.5)

with y = {p, ρ, T, s, u, F, g}, and the equilibrium state defined by

∇ p0 = ρ0 g0 (4.6)

ε + ∇ · F0 = 0 (4.7)

Equation (4.1) are linearized and the variables (y′) expanded onto the spheri-
cal harmonics (Y m

� ), for instance the Lagrangian displacement associated with the
oscillations is expanded such as

ξ(r) =
∑
�,m

(ξr er + ξH ∇H ) Y�,meiσ t (4.8)

with σ = ω + iη, ω the pulsation frequency and η the damping rate, and u′ = σ ξ .

Further assuming that the specific entropy is conserved during the oscillations
and using (4.4) and (4.6) into (4.1), one gets [26]

1

r2

d

dr

(
r2ξr

)
− g

c2
s
ξr +

(
1 − S2

�

ω2

)
p′

ρc2
s

= 0, (4.9)

1

r

dp′

dr
+ g

ρc2
s

p′ + (N 2 − ω2)ξr = 0, (4.10)

where the fluctuations of the gravitational acceleration associated to the oscillations
have been neglected for sake of simplicity, cs is the sound speed, S� is the lamb
frequency, and N is the buoyancy frequency defined such as
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N 2 = g

(
1


1

d ln p0

dr
− d ln ρ0

dr

)
(4.11)

where 
1 = (∂ ln p0/∂ ln ρ0)s, p0 the mean pressure, and ρ0 the mean density
Combining (4.9) and (4.10) into a second order differential equation and further

assuming a local solution of the form eikr r , one can derive the dispersion relation of
gravito-acoustic waves

k2
r = ω2

c2
s

(
1 − N 2

ω2

) (
1 − S2

�

ω2

)
(4.12)

From (4.12), one can distinguish two limits, namely

• ω2 � N 2, S2
� corresponds to acoustic modes (p modes), and the dispersion rela-

tion reduces to

k2
r = ω2

c2
s

(4.13)

• ω2 � N 2, S2
� corresponds to the limit of gravity modes (g modes)

k2
r =

(
N 2

ω2 − 1

)
k2

h (4.14)

with k2
h = �(�+ 1)/r2 is the local horizontal wave number.

Note that modes are gravito-acoustic waves; depending on their frequency and
the location in the Sun their properties are a mixture between pure gravity and pure
acoustic modes. Equations (4.13) and (4.14) are only asymptotic limits but are useful
to understand the main properties of the solar cavity. In the following, we restrict our
discussion to gravity modes, for which (4.14) will be used.

4.2.2 Some g Mode Properties Near the Sun Surface

A key feature of solar g modes is the behavior of their displacement across the
convective region and near the surface. The upper part of the Sun is convective such
that the buoyancy frequency vanishes,1 i.e. the restoring force no longer exist. From
(4.14) the radial wave number is imaginary since k2

r < 0. This permits to conclude
that gravity modes are evanescent in the convective region.

In order to understand the consequences of the evanescent nature of g modes on
their displacement, let us use an asymptotic solution of the wave equation for ξr .
Following Unno et al. [26]

1 More precisely, N 2 < 0 in a convective region that is not strictly adiabatic. Nevertheless, the
departure from adiabaticity is small for the problem we are considering.
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Fig. 4.1 Mode velocity as a
function of the radius,
normalized so that the
kinetic energy equals to unity
(see (4.17)) for a solar g
mode of radial order n = 10
(ν ≈ 60μHz) in solid line
and a solar p mode of radial
order n = 3 (ν ≈ 600μHz)
in dashed line

ξr ∝ 1√
κ

exp

⎛
⎝−

r∫

rb

κ(r ′)dr ′
⎞
⎠ (4.15)

for r � rb, where rb is the bottom of the convective region, and κ2 = −k2
r > 0.

From (4.15) and (4.14), one clearly see that ξr decreases exponentially through the
convective region. The mode is evanescent and consequently will exhibit a small
amplitude at the Sun surface (compared to the amplitude at r = rb). This is one
of the main difficulty in the observational track for solar g modes. This property is
emphasized in Fig. 4.1 for a g mode of radial order n = 10.One can see the dichotomy
between the radiative region, where the mode oscillates, and the convective region,
where the mode displacement exponentially decreases toward the surface. Further
assuming that N 2 = 0, one can also infer the dependence of the mode amplitude
with the angular degree since in that case (4.15), with the help of (4.14), becomes

ξr ∝ 1√
κ

(
r

rb

)−√
�(�+1)

(4.16)

which permits to point out that the higher the angular degree the higher the decrease
of mode amplitude through the convection region. Hence, low-angular degree modes
are expected to present higher amplitudes at the Sun surface. This is one of the reason
why most of observational efforts focused on low-degree g modes.

In addition to the evanescent nature of g modes in the convection region, there is
an other effect that tends to make the mode amplitude very small at the solar surface.
Equations (4.9) and (4.10) are solved with an arbitrary amplitude so we choose to
normalize the modes such that its total energy is

E = Mv2
osc ≡ 1 (4.17)

where M is the mode mass that is the normalized inertia such that M = I/ |ξ(r)|2 ,
and vosc the mode velocity. The squared mode velocity can then be computed using
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(4.17) for a solar model. The result is plotted in Fig. 4.1 for a p and g mode. It turns
out that at the surface, a g mode presents a lower velocity than the p mode as the
result of its larger inertia. It comes from the nature of a g mode that probes the inner
layers of the Sun where density is much larger than at the surface. Consequently, for
the same amount of energy it is more difficult to drive a g mode than a p mode. In
other words, for the same amount of kinetic energy the displacement associated to a
g mode is lower than for a p mode because there is more “mass” to move.

As a summary, solar gravity modes permit to probe the solar core so that they
are able to give us information on the rotation profile, the sound speed profile etc.
In the innermost layers of the radiative region the buoyancy frequency is positive
and higher than the mode frequency N ≈ 500μHz such that the buoyancy force
acts efficiently to restore wave perturbations toward equilibrium, thus allowing for
an oscillatory motion. Hence, g modes mainly probe the inner layers of the Sun, as
displayed in Fig. 4.1. However, this advantage is also a source of difficulties since
their high-inertia and evanescent nature tend to make their surface amplitudes very
small. Nevertheless, a definite answer on g-mode surface amplitudes needs to take
the energetic aspects into account and it is the object of the following sections.

4.3 Energetic of Gravity Modes: Driving
and Damping Processes

Mode amplitude is a balance between driving and damping processes, thus in this
section we aim at explaining the main features of mode driving and damping mech-
anisms under the assumption that driving is dominated by turbulent convection and
the mode is stable. We first establish the equation governing is the mode kinetic
energy so as to emphasize the way both the driving and damping contribute to the
mode energy.

4.3.1 Principle: Forced and Damped Oscillator

The mode total energy is by definition the quantity

Eosc(t) =
∫

dm |vosc|2 (r, t) (4.18)

where vosc is the mode velocity at that radius.
We assume that the mode damping to occur over at a time-scale much longer than

that associated with the driving. Indeed, for solar p modes the damping is proportional
to the mode line-width that is of the order of several μHz while the mode driving is
dominated by eddies at the top of the convection zone with a frequency of several
mHz. Accordingly, damping and driving can be completely decoupled in time. Let
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us define P to be the amount of energy injected per unit time into a mode by an
arbitrary source of driving (which nevertheless acts over time scale much shorter
than 1/η). Then, as described by Samadi (2009, this volume)

dEosc

dt
+ 2ηEosc = P. (4.19)

The mode kinetic energy is then a balance between the driving and damping2

processes. For solar g modes one has to provide a physical modeling of both processes
to determine their amplitude since contrary to solar p modes they are not observed
and the damping can not be inferred from the observations. An extended discussion
on p modes and comparison with observations can be found in Samadi (2009).

4.3.2 Driving Mechanisms

A complete description of mode excitation by turbulent convection as well as a
derivation of the equations governing the driving is addressed in Samadi (2009, this
volume). Here, we recall the main features and discussed the particular case of solar
g modes.

The inhomogeneous wave equation governing mode excitation is

(
∂2

∂t2 − L
)

vosc + Cosc = S t , (4.20)

where L is the linear operator [26], the operator Cosc involves both turbulent and
pulsational velocities and contributes to the linear dynamical damping [27].

Finally the St operator contains the source terms, given by

St = SR + SE + S + SM + Lt (4.21)

with

• the Reynolds stress contribution

SR = − ∂

∂t
∇ : (ρ0ut ut ), (4.22)

where ut is the turbulent velocity field and ρ0 the mean density. This term is the
dominant term (Samadi 2009, same volume), it corresponds to the generation of
acoustic noise by turbulence. It scales as the square of the Mach number [27].

• the entropy contribution

SE = ∇(αsut · ∇st ), (4.23)

2 Note that η > 0 corresponds to the damping in the following.
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with αs = (∂ ln p/∂ ln s)ρ, and st the turbulent fluctuations of entropy. The
entropy contribution is related to the advection of turbulent fluctuations of entropy
by the turbulent field. It scales as the Mach number to the third and its contri-
bution is small compared to the Reynolds one. More precisely, it is dominant in
the uppermost part of the Sun, the super-adiabatic region, but globally remains
small compared to the Reynolds contribution. Consequently, the entropy term is
negligible for solar gravity modes.

• the rotational contributions

S = − ∂

∂t
ρt

[

∂

∂φ
ut − 2� × ut − r sin θut · ∇eφ

]
, (4.24)

where � = eφ is the rotational frequency. Those contributions are related to rota-
tion, they scale as the Mach number to the third. In addition, they are proportional
to the ratio /ω, which is very small for slow rotators such as the Sun. Hence,
those terms are negligible for solar g modes.

• terms involving the second order mass flux

SM = ∂

∂t
(ρt g)+ ∇

[
c2

s ∇ · (ρt ut )
]

− g∇ · (ρt ut )− ∂2

∂t2 (ρt ut ) (4.25)

All those contributions are negligible because they scale as M3.

• Lt contains linear terms in term of turbulent fluctuations. [27] have shown that
those terms do not contribute to the excitation.

As the sources are random, the mode amplitude (A) can only be calculated in
square average, 〈|A|2〉. From Samadi and Goupil [27], one finds

〈|A|2〉 = C2

8η(ω0 I )2
, (4.26)

with

C2 ≡
∫

d3x0

+∞∫

−∞
d3rdτe−iω0τ 〈(ξ · S R)1(ξ · S R)2〉 (4.27)

where η is the mode damping rate, and the subscripts 1,2 denote two different spatial
and temporal locations.

Eventually, it is possible to express the excitation rates from (4.26) such as [28]

P = η
〈
|A|2

〉
ω2

0 I = C2

8I
(4.28)

As expected in Sect. 4.2, the excitation rate is inversely proportional to the mode
inertia.

Note also that P is independent of the mode damping and will be determined by
the correlation product between the source term, here the divergence of the Reynolds
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Fig. 4.2 Integrant of the
mode excitation rates a
function of the radius. The
dashed line corresponds to
the mode � = 1, n = 30 and
the solid line to
� = 1, n = 2. Note that
r/R ≈ 0.7 corresponds to
the base of the solar
convection zone

stress, and the eigenfunction as shown by (4.27). Figure 4.2 displays the integrant
of g mode excitation rates for two modes, namely a low- radial-order and high-
radial-order modes. It turns out, as a result of the balance between mode shape and
turbulent kinetic energy flux, that g modes are excited in the deeper layers of the
solar convective region in sharp contrast with p modes.

4.3.3 Sources of Damping (η)

The physics of mode damping is unclear and many uncertainties remain for solar-like
oscillations. In this section we attempt to provide a short description of the major
physical mechanisms involved and we discuss the particular case of g modes.

The oscillation exchanges energy with its surrounding medium through many
processes, which can be split into two groups

η = ηp + ηother (4.29)

where ηp represents the contributions associated to pressure fluctuations and ηother
are extra-contributions, usually neglected [29].

To investigate the mode damping processes, it is mandatory to take the energy
equation into account. Some insight into the different physical mechanisms involved
in mode damping can be obtained when writing the integral equation for η.This equa-
tion is established by considering the equation of kinetic energy of the oscillation.
This yields [26]

ηp = 1

2ωI

M∫

0

Im

(
δρ

ρ0

∗ δP

ρ0

)
dm (4.30)

with
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δP = δPturb + δPg (4.31)

where ρ0 denotes the mean density, I is the mode inertia, ω the real part of the mode
frequency, δρ, δPg, δPturb the Lagrangian perturbations of the mode density, gas
pressure and turbulent pressure (i.e. the diagonal part of the Reynolds stress tensor),
respectively. Using the following thermodynamic relations

δPg

P0
= χρ

δS

cv
+ 
1

δρ

ρ0
(4.32)

χρ = (
3 − 1)cvρ0T0/P0 (4.33)

(
3 − 1) =
(
∂ ln T0

∂ ln ρ0

)
s

(4.34)

one can express the damping rate more explicitly as

η = 1

2ωI

M∫

0

Im

[(
δρ

ρ0

∗
T0δS

)
(
3 − 1)+

(
δρ

ρ0

∗ δPturb

ρ0

)]
dm (4.35)

where δS is the perturbation of entropy, T0 the mean temperature, and the star denotes
the complex conjugate.

For sake of simplicity, we further restrict our discussion to the radial case3 so that
the perturbed wave energy equation reads

iσT0δS = −dδLr

dm
− dδLc

dm
+ δεt (4.36)

with δLr , δLc the perturbations of the radiative and convective fluxes, respectively,
and δεt the perturbation of the dissipation rate of turbulent kinetic energy into heat.
The set of (4.30–4.36) eventually permit to identify the different sources of damping
related to pressure fluctuations. One can write

ηp = ηturb + ηconv + ηrad + ηdissipation (4.37)

where

3 Even if non-consistent with the non-radial nature of g modes, this assumption is sufficient for the
discussion. Indeed, this assumption is justified when the perturbation of the horizontal component
of the radiative flux can be neglected in front of the radial one, i.e. when

1

T0

dT0

dr
� �(�+ 1)

r

This is verified for low-degree asymptotic solar g modes.
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• ηturb is the contribution due to the perturbation of the turbulent pressure, its expres-
sion is

ηturb = 1

2ωI

M∫

0

Im

(
δρ

ρ0

∗ δPturb

ρ0

)
dm (4.38)

The oscillation loses (or gains) part of its energy by producing a work δPturbdV,
where the variation of volume dV induced by the oscillation is related to the mode
compressibility ∇ · ξ = −δρ/ρ. These losses of energy are mainly controlled by
the phase differences between δρ and δPturb. As shown by (4.38), if those two
quantities are in phase, there is no damping.

• ηrad is the contribution to the damping rate due to the perturbation of the radiative
flux, it reads

ηrad = 1

2ω2 I

M∫

0

Re

(
δρ

ρ0

∗ dδLr

dm

)
(
3 − 1)dm (4.39)

This contribution contains two dominant terms, namely the opacity effect that
is responsible for the instability of modes in classical pulsators but negligible
in solar-type stars [30, 31]. The other contribution is related to the temperature
fluctuations δT . In the diffusion approximation, the radiative flux is approximated
by a Fourier law, hence in the perturbed energy equation the divergence of Fr

introduces the second derivatives of δT . The former then introduces a factor k2
r

(where kr ≈ √
�(�+ 1)N/(ω0r) is the vertical local wavenumber in the g mode

cavity). Accordingly, the higher the mode radial order the higher ηrad. Indeed, we
also note that the higher the mode angular degree the higher ηrad, since � is nothing
but the horizontal equivalent of n.

• ηconv is the damping associated to the perturbation of the convective heat flux

ηconv = 1

2ω2 I

M∫

0

Re

(
δρ

ρ0

∗ dδLc

dm

)
(
3 − 1)dm (4.40)

This contribution is certainly the more complex to evaluate since it strongly depends
on how convection and oscillations are coupled and consequently it depends on
the modeling of convection. It is necessary to take ηconv into account when the
convective turn-over time-scale is of the same order as the modal period. This
is typically the case for the solar 5 min oscillations for which the eddies near
the photosphere have a time-scale of several minutes. In contrast, i.e. when the
time-scales are uncorrelated (τconv � Posc, with τconv the convective turn-over
time-scale and Posc the modal period), the frozen convection assumption can be
adopted and ηconv no longer plays significant role [32].

• ηdissipation is the contribution to the damping associated with the perturbation
of the dissipation rate of turbulent kinetic energy into heat. This contribution
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was introduced by Ledoux and Walraven [33] and more recently by Grigahcène
et al. [34], it partly compensates the effect of turbulent pressure (ηturb) and in the
limit of a fully ionized gas in which radiative pressure can be ignored the sum
ηturb + ηdissipation vanishes.

The contributions to the damping rate, i.e. ηturb, ηrad, ηconv, and ηdissipation, are
often thought to be dominant in the Solar case. Nevertheless, other contributions had
been proposed [ηother in (4.29)], namely

• ηviscturb is the contribution to the damping rate related to turbulent viscosity

ηviscturb = 1

2I

M∫

0

νt

∣∣∣∣r ∂∂r

(
ξr

r

)∣∣∣∣
2

dm (4.41)

where νt is the turbulent viscosity. Turbulent viscosity is an effective viscosity
by analogy to the molecular case in which one considers eddies as “particles”. In
kinetic gas theory, molecular viscosity corresponds to a perpendicular (in respect
to the direction of the fluid motion) transfer of impulsion between particles of the
fluid. In fact, it is the off-diagonal terms of the Reynolds stress tensor that act to
damp the modes. While the diagonal part is related to the mode compression (see
(4.38)), these off-diagonal contributions are related to the shear of the mode.

• ηsurface is a contribution corresponding to the losses of energy at the star upper
boundary

ηsurface = − 2

ω2
0 I

∫

V
Re (∇ · (δPvosc)) dV = − 2

ω2
0 I

∫

S
Re (δPvosc · dS)

(4.42)
One immediately sees that the term δPvosc corresponds to the wave flux. In the
ideal case, the wave flux of a mode is zero since a standing wave is composed of
two progressive waves traveling in the opposite direction. Both waves induce a
wave flux but the sum vanishes. Nevertheless, in the non-ideal case, at the upper
boundary waves are reflected due to a density drop but there is still part of the wave
energy that tunnels over this barrier. A full discussion of this mechanism can be
found in [35].

• ηscattering is a contribution to the damping rate that was originally considered by
Goldreich and Murray [36] in the context of solar p modes. The principle can
be sketched as follows: a progressive wave that travels a turbulent media will be
affected by random phase shifts. Now considering a standing wave, i.e. a mode, it is
a sum of two progressive waves and consequently it will also be affected. However,
modes are affected in a different way since scattering couple modes. Eddies can
modify the phase of a mode α so that the final state corresponds to a mode β, thus
energy is transmitted from α to β. This is possible under the condition [36]

∣∣ωβ − ωα
∣∣ < 1

τ
(4.43)
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whereωβ, ωα are the frequency of the modeβ andα, respectively. τ is the turn-over
time-scale of the energy bearing eddies.

• Some other contributions due to non-linear effects have also been investigated, for
instance non-resonant three mode coupling (see [37] and references therein) or
saturation of over-stable modes [20].

Many works attempted to model the damping rates of solar modes. For instance,
Balmforth [38], Dupret et al. [39] based on a perturbed mixing-length approach of
Gough [40] and Grigahcène et al. [34], respectively. One can also mention the work
of Xiong et al. [41] based on a Reynolds stress approach that consists in averaging the
Navier–Stockes equation and in resolving the high-order moment of this equation.

For solar p modes, the dominant contribution to the damping rates is still a mys-
tery. For instance, Goldreich and Kumar [42] have shown that both the radiative
contribution (ηrad) and the one associated with turbulent viscosity (ηviscturb) are of
the same order of magnitude. In contrast, Gough [43] and Balmforth [38] found that
the damping is dominated by the modulation of turbulent pressure (ηturb) while the
result of Dupret et al. [39] suggests the perturbation of the convective heat flux (ηconv)

is dominant. Such disagreements are mainly related to the strong coupling between
convection and oscillation which makes the problem difficult when the characteristic
times associated with the convective motions are of the same order as the oscillation
periods.

For low-order solar g modes, the situation is similar. Recent computation [17] have
shown that those modes remain sensitive to the upper layers of the Sun and to the
treatment of non-local convection. In contrast, Belkacem et al. [17] have shown that
high-order gravity modes, i.e. low-frequency modes, are insensitive to this treatment
and that their damping is dominated by radiative damping (see Fig. 4.3). This is the
result of the large-amplitude of these modes in the inner part of the radiative zone
and of their high-radial wave number (kr ). Note that such a result is in agreement
with the computation of Kumar et al. [16] in this particular frequency range.

4.4 Theoretical Estimates on g Mode Amplitudes

Keeley [44] was the first to investigate the hypothesis that g modes are excited
by turbulent convection. This author tried to explain the observational results of
Severnyi et al. [5], Brookes et al. [6], and Delache and Scherrer [45], which claim
to detect a solar g modes with a period near 2h40m. He concluded that excitation
by turbulent convection is unlikely to excite only one mode but rather the whole
spectrum of gravity modes. However, those detections have not been confirmed [7].
Hence, while the stochastic excitation of solar p modes by turbulent convection was
privileged, it becomes the more likely driving mechanism also for g modes.
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Fig. 4.3 Contributions to the
work from the radial
radiative flux variation (solid
line), the transverse radiative
flux variation (dotted line),
and the time-dependent
convection terms (dashed
line), for the mode � = 1,
g10 (top panel) and � = 1,
g32 (bottom panel). dWF Rr
corresponds to the
contribution of the radial
component of the radiative
flux, dWF Rh to the
horizontal component and
dWc to the contribution
associated to convection and
turbulent pressure
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4.4.1 Computation Based on the Equipartition Assumption

A simple way to evaluate mode amplitudes, without computation of both excitation
and damping processes, is to use the equipartition assumption. It consists in equating
the mode energy with the kinetic energy of resonant eddies whose lifetimes are close
to the modal period.

This assumption has been theoretically justified for p modes, by Goldreich and
Keeley [46] assuming that the modes are damped by eddy viscosity. They found that
the modal energy is inversely proportional to the damping rate, η, and proportional
to an integral involving the term Eλvλλwhere Eλ ≡ (1/2)mλv

2
λ is the kinetic energy

of an eddy with size λ, velocity vλ and mass mλ = ρλ3 (see Eq. (46) of Goldreich
and Keeley [46]). Using a solar model, they assume that the damping rates of solar p
modes are dominated by turbulent viscosity and that accordingly the damping rates
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Fig. 4.4 Schematic mode surface velocity as function of frequency. Theoretical computations by
Gough [15], Kumar et al. [16], and Belkacem et al. [17] are provided in dashed line, dot-dashed
line and solid line, respectively. The GOLF observational threshold associated with ten years of
observation is in solid line and observational results obtained by Gabriel et al. [8], Turck-Chièze et
al. [9], Delache and Scherrer [45] are represented by squares. Courtesy: T. Appourchaux

are proportional to the eddy-viscosity, that is η ∝ vλλ (see (6) of Goldreich and
Keeley [46]). Hence, after some simplifying manipulations, Goldreich and Keeley
[46] found the modal energy to be (see their Eq. (52))

Eosc ≈ 0.26Eλ = 0.13mλv
2
λ. (4.44)

This assumption was used by Christensen-Dalsgaard and Frandsen [47] for p
modes and Gough [15] and Berthomieu and Provost [48] for solar g modes. The
results obtained by Gough [15] is presented in Fig. 4.4. The author found a maxi-
mum of velocity of about 0.5 mm s−1 for the � = 1 mode at ν ≈ 100μHz. For the
modes of angular degree � = 2, the amplitudes are found to linearly increase with fre-
quency to reach values around 5 mm s−1 for low-order g modes (ν ≈ 400–500μHz).
However, the result strongly depends on the way the modes are damped, and for g
modes there is no evidence that they are mainly damped by turbulent viscosity.

4.4.2 Full Computation of Mode Driving and Damping

Kumar et al. [16], motivated by a claim of g-mode detection in the solar wind [49],
performed the first theoretical estimate of g-mode amplitudes that is based on a
computation of both excitation and damping rates.

Computations were performed using the Goldreich et al. [50] formalism for the
excitation rates. In this formulation, Kumar et al. [16] assume a simplified description
of turbulence in which the kinetic energy of the driving eddies scales according to
the Kolmogorov spectrum. Also of particular interest is the way the eddies and the
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standing waves are temporally-correlated. The Goldreich and Keeley [46] approach,
upon which the Goldreich et al. [50] and Kumar et al. [16] formulations are based,
assume that the time-correlation between eddies is Gaussian. As we will see in
the following sections, the way this function is chosen can lead to very different
estimation of g-mode amplitudes . Concerning the damping rates, both turbulent and
radiative contributions to the damping rates were included as derived by Goldreich
and Kumar [42]. The full computation, as performed by Kumar et al. [16], shows
that the mode life-time is around 106 years.

Eventually, the computation of both excitation and damping rates led to a max-
imum surface velocity vs ≈ 1 mm s−1 near ν = 200μHz for � = 1 modes. The
authors also found very low velocities (10−2 mm s−1) for ν < 100μHz (see Fig. 4.2).

4.4.3 The Special Case of Asymptotic g Modes

Recently, Belkacem et al. [17] investigated the particular case of the amplitudes
of asymptotic g modes. The formalism used by Belkacem et al. [17] to compute
excitation rates of non-radial modes were developed by Belkacem et al. [51] who
extend to non-radial modes the work of Samadi and Goupil [27], Samadi et al. [52],
and Samadi et al. [53].

In order to compute the excitation rates, one needs to determine the kinetic
energy spectrum (Ek) as well as the eddy-time correlation function (χk). Both are
derived from 3D numerical simulations see Belkacem et al. [17], for details. The
Lorentzian function (χk) is found to better reproduce the eddy-time correlation func-
tion from the 3D numerical simulation than a Gaussian function in the frequency
range ν ∈ [20μHz; 110μHz]. In addition, the eddy-time correlation function is
poorly represented by a Gaussian function, which underestimates χk by many order
of magnitudes (see Fig. 4.5).

Computation of the excitation rates, with the input of 3D numerical simulations
from the ASH code [54], permits to define two regimes. As shown by Fig. 4.5,
at lower frequencies (ν < 100μHz), the excitation rates (P) reach values about
1020−21 erg s−1. At higher frequencies (ν > 100μHz), the excitation rates (P) are
found smaller, with values around 1019 erg s−1.This can be explained by considering
the balance between two contributions to the excitation rate (P),which are the mode
inertia I and mode compressibility. Mode inertia decreases with frequency since the
higher the frequency, the higher up the mode is confined in the upper layers. This then
tends to decrease the efficiency of the excitation of low-frequency modes and seems
to favor high-frequency g modes. On the other hand, mode compressibility is to be
considered. It is minimum for frequencies near the fundamental mode ( f mode) and
increases for asymptotic p and g modes [17, 51]. It is found that it competes and
dominates over the effect of mode inertia. In the asymptotic regime (ν < 100μHz),
the modes are compressible explaining the efficiency of the excitation.

Damping rates are computed with a fully non-radial non-adiabatic pulsation code
MAD [39, 55, 56]. It takes into account the role played by the variations of the
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Fig. 4.5 Top: Eddy-time
correlation function versus
frequency (χk). Crosses
represent χk(ω) obtained
from the 3D simulation at the
wave number k0 that
corresponds to the maximum
of E(k), and at the radius
r/R� = 0.89. Data (from
the numerical simulation) are
obtained with a time series of
duration ∼4.68 days with a
sampling time of 800 s. The
theoretical curves are
normalized so that their
integrals over-frequency
equal that of the simulated
data. Solid line corresponds
to a Lorentzian function,
dashed line to a Gaussian
one and dashed-dot line to a
combination of Lorentzian
and Gaussian functions [17].
Bottom: Rate (P) at which
energy is supplied to the
modes versus the frequency
for modes with angular
degree � = 1, 2, and 3,
using a Lorentzian eddy-time
correlation function

convective flux, the turbulent pressure and the dissipation rate of turbulent kinetic
energy (see Sect. 4.3.3 for details). Belkacem et al. [17] have found that for high-
frequency g modes (ν > 110μHz), the work integrals and thus the damping rates are
sensitive to the convection/pulsation interactions because the role of the surface layers
in the work integrals becomes important. In contrast, for low-frequency g modes
(ν < 110μHz), the work integral and then the damping rates are found insensitive to
the convection/pulsation interactions as well as the non-local parameters. Eventually,
the damping rates dominated by radiative losses behave as ν−3.

Figure 4.4 presents intrinsic values of the velocities. Taking visibility factors as
well as the limb-darkening into account, Belkacem et al. [17] finally found that the
maximum of apparent surface velocities of asymptotic g-modes is ≈ 3 mm s−1 for
� = 1 at ν ≈ 60μHz and � = 2 at ν ≈ 100μHz. Those results then put the
theoretical g-mode amplitudes near the GOLF observational threshold.

4.4.4 Discussion

Amplitudes found by Gough [43], Kumar et al. [16] and Belkacem et al. [17] differ by
orders of magnitude. Gough [43] estimates were based on an equipartition principle
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derived from the work of Goldreich and Keeley [46, 57] and designed for p modes.
Its use for asymptotic g modes is not adapted as the damping rates of these modes
are not dominated by turbulent viscosity. However, for low-order g modes, the main
contribution is not clearly identified and the validity of the equipartition assumption
remains unclear. Kumar et al. [16] have carried another investigation of g mode
amplitudes, and most of the quantitative disagreement with Belkacem et al. [17],
for asymptotic g modes, comes from the use of a different eddy-time correlation
function. Indeed, Kumar et al. [16] assumed a Gaussian function while Belkacem
et al. [17] choose a Lorentzian function, motivated by 3D numerical simulation
results.

A critical issue concerns the modeling of damping rates, which is challenging
in particular for low-order g modes and p modes. The strong coupling between
convection and oscillation in solar-like stars makes the problem difficult. A predictive
description of the interaction between convection and oscillations when both are
strongly coupled, is mandatory. It would require a sophisticated analytical or semi-
analytical theory of the convection-oscillation interaction, which will not be limited
to the first order in the convective fluctuations and which will take the contribution
of different spatial scales into account, without adjusting free parameters. It is a
necessary first step to provide a reliable quantitative estimate of low-order g modes.

4.5 Penetrative Convection

Excitation by turbulent convection is not the only way to generate gravity modes.
Penetrative convection is also thought to be an efficient mechanism to excite inter-
nal waves as it has been known for many years for geophysical flows [58]. In the
Sun, turbulent plumes are created at the upper boundary of the convection zone,
where radiative cooling becomes dominant and where the flow reaches the stable
atmosphere. In this region, the updrafts become cooler than their environment and
stop their ascent. This cool flow is then denser than its environment and it triggers
the formation of turbulent descending plumes [59]. When plumes fall down through
the convection zone, they entrain the surrounding flow at their edge. It is the entrain-
ment hypothesis, first introduced by G.I. Taylor and supported by observations in
geophysical flows (for a review see [60]). This leads to the formation of large-scale
downwelling turbulent structures that reach the stably stratified radiative zone below
and that penetrate over some distance releasing its kinetic energy into internal waves
and presumably into modes.

Andersen [18] proposed a theoretical estimation of g mode amplitudes based an
2D cartesian numerical simulations. The authors computed the attenuation factors
between the bottom and top of the simulated convective region, that correspond to the
exponential decreases of g modes in a convective region. Using order of magnitude
energetic considerations and the attenuation factors they extrapolated an estimation
of mode amplitude at the Sun surface, from 0.01 to 5 mm s−1. Nevertheless, those
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assumptions were based on rather crude estimates such as the number of modes
involved.

More recently, Dintrans et al. [19] investigated the internal wave generation by
penetrative convection by projecting the wave flux on g-modes of the simulated cav-
ity. The authors then studied the relation between penetration and g mode amplitudes
and have shown that up to 40% of the convective kinetic energy can reside into g
modes. In addition, their results show that the g-mode mean life-time is about twice
the modal period. Those promising results are based on 2D polytropic cartesian sim-
ulations, which can not permit to infer g-mode amplitudes in the Sun. However, this
work presents the advantage of giving a quantitative study of g mode amplitudes by
penetrative convection.

Pushing realism one step further consists in performing 2D numerical simulations
in spherical geometry with a realistic stratification. Such a work has been performed
by Rogers and Glatzmaier [61]. A striking result is that using a quasi-linear simula-
tion Rogers and Glatzmaier [61] have shown that standing waves, i.e. g modes, are
excited by penetrative convection. However, full non-linear simulations do not exhibit
modes but only low-frequency progressive waves. Non-linear wave-wave interaction
is thought to be responsible for this result. A similar mechanism was proposed by
Kumar and Goldreich [62] to explain p mode damping. The authors demonstrated
that the dominant non-linear effect couples three waves: two trapped p modes from
which a propagative wave drain its energy. Nevertheless, the high-thermal diffusivi-
ties used in the simulation imply an over-estimation of the solar convective flux by
a factor 105. Hence, one can expect that the wave flux is over-estimated by a similar
factor, which calls for caution since non-linear effects depend on mode amplitudes .

4.6 Concluding Remarks

In this lecture, we discussed the excitation and for damping mechanisms of solar g
modes and reviewed the results obtained their amplitudes.

Concerning the damping rates, the non-detection of these modes favors that they
are linearly stable. In the asymptotic regime, radiative damping is thought to be the
dominant contribution [16, 17]. For low-order g modes the situation is less clear since
those modes are sensitive to the interaction with convection. For p modes there is no
consensus about the dominant contribution of the mode line-width [29], so does for
low-order g modes. This issue is critical in the sense that it prevents an unambiguous
theoretical determination of low-order g mode amplitudes .

For the driving mechanism, turbulent convection is thought to be responsible for
g mode excitation [16, 17, 43]. Quantitative estimates differ from each other by
orders of magnitude and those discrepancies have been partly explained by Belka-
cem et al. [17]. Their results tend to show that high-order g mode amplitudes are
higher than previous findings and are close to the actual observational limit from the
GOLF instrument. For low-order g modes, further progress on the determination of
g mode amplitudes is strongly related to the understanding of damping processes.
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Other processes have also been proposed to drive g modes, for instance penetrative
convection which can be studied with the development of numerical simulations.
Nevertheless, a quantitative estimate is not yet available since it would require real-
istic 3D numerical simulations that computer resources do not yet permit.
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Chapter 5
Unveiling Stellar Cores and Multipole
Moments via their Flattening

Jean-Pierre Rozelot, Cilia Damiani, Ali Kilcik, Berrak Tayoglu
and Sandrine Lefebvre

Abstract Rotation, and more precisely differential rotation, has a major impact on
the internal dynamics of stars (and the Sun) and induces many instabilities driving
the transport of angular momentum. In this chapter we shall consider these effects
on the shape of shelllular layers, and to first order, those concerning the apparent
oblateness. Thanks to the advent of interferometry techniques, stellar shapes can now
be measured with a great accuracy. We will review here some main results obtained
so far on different stars and we will give their main physical parameters taking into
account differential rotation. We will discuss how the core density can be reached.
Gravitational moments are presented for these observed flattened stars, and for the
Sun, for which some conflicting results are presented.
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5.1 Relating Rotation and Measured Flattening

It has been demonstrated that a sphere is the unique solution to the problem of
hydrostatic equilibrium for a fluid mass at rest in tridimensional space. The problem
complicates when the mass is rotating. In stars, axial rotation modifies the shape of
equilibrium by adding a centrifugal acceleration term to the total potential, breaking
the spherical symmetry. The sphere becomes an oblate figure, and we have no a
priori knowledge of its stratification, boundary shape, planes of symmetry, transfer
of angular momentum in differentially rotating body, etc. When the velocity rotation
rate is non constant, in depth and in latitude, the surface changes from a spherical
to a spheroidal shape (and even more complex figures if asymmetry exists, due to
the presence of magnetic fields for instance). We will argue here that, if the stellar
geometrical deformation can be accurately observed, and measured, one should be
able to deduce informations on the stellar rotation, and density distribution, down
to the core.

For example, let us consider the case of a mass of polytropic gas of index n, rotating
at a constant angular velocity �. The equilibrium configuration and shape of such
a body is known since the works of [1, 2]. By writing the mechanical equilibrium
equations and seeking a solution in the form of a perturbed case of the non-rotating
configuration, neglecting furthermore the effects arising from �4, the boundary of
the star, defined for instance by a constant null density can be obtained. The surface
oblateness f is given by an equation of the type:

f = υ
�2

Gρc
,

where G is the constant of gravitation, ρc the density of the core, and υ a term
depending on the polytropic index chosen. Extensive computations can be found in
[2]; and for the case n = 3:

f =
(

0.5 + 0.856
ρm

ρc

)
�2 Req

g
(5.1)

where ρm/ρc, is the ratio of mean to central density, Req the equatorial radius of the
star, and g the gravity at surface. Even if such a formalism can be now considered
as outdated, it could be noticed that the approximation is still rather good and good
enough for non polytropic structures with discontinuous variation of density, such
as the Earth.

In the solar case, taking ρc/ρm = 107.168, � = 2.85 × 10−6 rad/s, Req =
R� = 6.955080 × 1010 cm and g = 2.74 × 104 cm/s2 (values taken in [3]), it
follows that f = 1.04 × 10−5, in satisfying agreement with the best up-to-date
determination of 8.55×10−6.

Conversely, if the flattening is accurately measured, the mass determined by dif-
ferent means, and the mean density computed (the volume can be known through the
measured two radii—equatorial and polar one), thus the core density can be reached.
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The model described by (5.1) is a crude simplification of the actual configuration of
the Sun and stars, but it serves as an illustration to link the flattening with the rotation
velocity and density distribution.

Since there is no simple analytical description of the mechanical equilibrium of
a non-uniformly dense star, with varying rotation velocity with depth and latitude
(except for the Sun), we shall limit the present study to the description of the re-
lationship between the flattening and the main parameters of the star according to
different assumptions.

After reviewing the current observational knowledge on solar and stellar flatten-
ings, we will detail different formalisms to link the main parameters of the star to
the observed flattening.

5.2 Measurements of the Flattening of the Sun and Stars

5.2.1 Flattening of the Sun

Solar flattening has been identified as a key parameter for astrophysics as early as
the late nineteenth century when Newcomb [4] demonstrated that if the difference
between equatorial and polar radii,�r = Req− Rpol = 500 mas, it would explain the
discrepancy between the prediction of Newtonian gravitational theory and the peri-
helion advance of Mercury observed by Le Verrier in 1859. However measurements
soon ruled this hypothesis out, for example Auwers [5] found�r = 38± 23 mas. In
modern times, even though general relativity had given a satisfactory prediction of
Mercury’s perihelion, the argument was once again debated after Dicke’s historical
measurement of �r = 41.9 ± 3.3 mas [6]. We know today that such measurements
were inaccurate; nevertheless they have been a source of progress. To summarize the
present knowledge of the flattening of the Sun obtained by different experiments, we
show in Fig. 5.1 the values obtained since 1993, comparing both ground-based and
space measurements. The actual value of the flattening of the Sun is still debated
but at the moment a commonly accepted value is �r = 8.6 mas [3]. Regarding the
high correlation found between the measured oblateness values and the facular index
data, we recommend to use:

�r = 8.21 mas.

Further details are given in [7–9].
Figure 5.1 shows that the solar flattening might be time dependent, the physical

mechanisms involved being likely an exchange of the first two multipole moments
with time. The first one (J2), which carries the oblateness, is predominant in period
of higher activity to the detriment of the second one (J4), the mechanisms inverting
in periods of lower activity [10, 11]. Those considerations are beyond the scope
of this chapter and require a fine understanding of the Sun’s interior to be tackled.
Nonetheless, even to first order, the flattening is a consequence of rotation and its
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Fig. 5.1 Recent flattening
measurements: ground-based
measurements obtained by
means of the Pic du Midi
Heliometer (black
diamonds), space-born
RHESSI’s result (violet
holed square), balloon-borne
Solar Disk Sextant (SDS)
experiment (blue diamonds)
and MDI instrument on
board SOHO (red squares).
The green curve (right scale)
is the faculae index which is
a good indicator of the solar
activity cycle. All errors
are ±1σ

value depends on the inner parameters of the star. In this regard, what has been
learned in the case of the Sun can be transposed to other stars, and mainly what is
known from the multipole moments.

5.2.2 Flattening of Stars

The recent advent in interferometric techniques has provided us with a possibility to
measure the flattening of distant stars. Surprisingly enough, the absolute accuracy of
such measurements is better than the one presently reached for the Sun. For instance,
the difference between the equatorial and polar radius of Altair (measured on the
projected sky-plane) is 2 × �rAltair = 0.424 ± 0.079 mas (2Req = 3.461 ± 0.038
and 2Rpol = 3.037 ±0.069 mas) [12], an accuracy better than for the Sun. And that
of Achernar is no more than 3 % only as Req = 12.0 ± 0.4 R� and Rpol = 7.7 ± 0.2
R� [13]. Some years ago the measurements were mainly available for fast rotators;
today at the current level of the technique, a more number of stars will be accessible
to oblateness measurements. We give in Table 5.1 a list of stars for which both the
polar and equatorial radii has been already measured, together with some of their
main physical parameters.

5.3 Different Models of Uniformly Rotating Body

In this section, we will derive the main parameters of a star via their flattening always
considering that the star rotates rigidly, i.e. with constant angular velocity in latitude
and depth.
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Table 5.1 List of stars for which the oblateness have been measured through different interferomet-
ric techniques. The last one is derived from spectroscopic and photometric observations. The table
is not exhaustive. Notations: Sp for Spectral; Tp : polar temperature; Teq : equatorial temperature;
M : mass of the star; Req and Rpol: equatorial and polar radii; veq : velocity at the equator; i : axis
star inclination; vc: critical velocity

Star Sp Type Tp Teq M Req/Rpol Req veq i veq/vc Ref.
(K) (K) (M�) (R�) (km/s) (◦)

Achernar B3Vpe 20000 9500 6.07 1.450 12.0 292 50.0 0.96 [14]
Regulus B7V 15400 10314 3.04 1.325 4.16 317 90.0 0.86 [15]
Vega A0V 10150 7900 2.303 1.230 2.78 270 4.7 0.75 [16]

9988 7557 1.246 2.87 270 4.5 0.77 [17]
Alderamin A7IV-V 8440 7486 2.0 1.298 2.82 283 88.2 0.83 [18]
Altair A7IV-V 8500 6509 1.8 1.237 2.12 277 55.0 0.76 [19]

8740 6890 1.215 1.99 273 63.9 0.73 [20]
8710 6850 1.217 2.02 271 62.7 0.73 [21]
8450 6860 1.221 2.03 286 57.2 0.75 [21]

Rasalhague A5 III 9300 7460 2.10 1.201 2.871 237 87.7 0.89 [22]
α Cep 8863 6707 1.92 1.246 2.739 262 64.9 0.93 [22]
ν Cygni B2Ve 22200 6.97 1.352 4.80 453 23 0.95 [23]

5.3.1 Model for Centrally Condensed Body

The total external potential of a star of mass M rotating at constant angular velocity
� can be expressed, assuming symmetry about the rotation axis, as the sum of a
gravitational and a centrifugal term,	g and	c, both depending on the radius r and
the colatitude θ

	tot(r, θ) = 	g(r, θ)+	c(r, θ) (5.2)

In hydrostatic equilibrium, the equipotential surfaces are simultaneously surfaces
of constant pressure p and constant density ρ. 1 In particular, p = const = 0 repre-
sents the surface of the star and its figure is wholly determined by the form of the
equipotential surfaces.

The radius of the star’s surface can be then expressed in the general form

r(θ) = s

[
1 +

∞∑
n=0

s2n(s)P2n(t)

]
(5.3)

where the coefficients s2n characterize the shape of the surface, and are therefore
called sometimes “shape coefficients", P(t) are the usual Legendre’s polynomials

1 The Von Zeipel’s [24] theorem stipulates that contours of temperature, density, or pressure should
be nearly coincident near the surface. Differential rotation, magnetic fields and turbulent pressure
are the largest local acceleration sources that may violate this theorem. It has been generalized to
account for differential rotation in the case of a “shellular” rotation law by Maeder [36].
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with t = cos θ and s is the mean radius of the equipotential surface under consider-
ation, defined as the radius of a sphere of equivalent volume. It can be shown [25]
that the first coefficients of (5.3) can be written as2

s0 = − 4

45
ε2 − 52

567
ε3 − 32

315
εk,

s2 = −2

3
ε − 23

63
ε2 − 8

21
k − 4

27
ε3 + 2

21
h − 152

315
εk,

s4 = 12

35
ε2 + 32

35
k + 4

11
ε3 + 192

385
h + 32

105
εk,

s6 = − 40

231
ε3 − 80

231
h. (5.4)

where ε = (Req − Rpol)/Req is the oblateness (Req and Rpol are the equatorial and
polar radii of the surface), k and h characterize the difference between the equilibrium
spheroid and the ellipsoid of rotation in second-order and third-order oblateness,
respectively; k and h are functions of s (see Annex 1). One can then readily obtain
expressions relating the equatorial radius to the mean radius:

Req = s

(
1 + 1

3
ε + 2

9
ε2 + 8

15
k + 14

81
ε3 + 26

105
h + 16

63
εk

)
, (5.5)

or conversely

s = Req

(
1 − 1

3
ε − 1

9
ε2 − 8

15
k − 5

81
ε3 − 26

105
h + 32

315
εk

)
. (5.6)

The external gravitational potential of the star is in the form (see [26])

	(r, t) = −G M

r

[
1 −

∞∑
n=1

(Req/r)2n J2n P2n(t)

]
(5.7)

where J2n are the gravitational moments of the star. The coefficients J2n are linked
with ε, k and h in (5.4) when taking (5.7) at the surface. It can be easily found through
some algebra that:

J2 = +
[

2

3
ε − 1

3
q − 1

3
ε2 + 8

21
k(1 + q)+ 3

7
εq + 40

147
εk

− 50

294
ε2q − 2

21
h

]
,

J4 = −
[
−4

5
ε2 − 32

35
k + 4

5
ε3 − 50

49
ε2q + 3616

2695
εk + 4

7
εq

+208

385
qk − 192

385
h

]
,

J6 = +
[

8

7
ε3 − 20

21
ε2q − 160

231
qk + 128

77
εk + 80

231
h

]
. (5.8)

2 Note the relation −s0 = 1
5 s2 + 2

105 s3
2 .



5 Unveiling Stellar Cores and Multipole Moments via their Flattening 167

where q is the dimensionless square of the angular velocity of rotation of the star
defined as

q = �2
eq R3

eq/G M (5.9)

In the same way, it will be useful to use χ defined as

χ = �2
eqs3/G M (5.10)

(Note that q and χ are related in terms of each other and are expressed in terms of
s0, s2, s4 . . . , as: q/χ = (Req/s)3 = 1 − 3

2 s2 + ( 3
4 s2

2 + 3s0 + 9
8 s4)+ · · · , ).

To first approximation, one can take s = Rsp, the radius of the best sphere passing
through Req and Rpol:

s = (R2
eq Rpol)

1/3 (5.11)

It results from this formalism that

−s2 = J2 + 1

3
χ + 11

7
J 2

2 + 19

21
χ J2 + 8

63
χ2

+ 25

4
J 3

2 + 162

35
χ J 2

2 + 73

60
χ2 J2 + 116

945
χ3

+ 27

28
J2 J4 + 2

21
χ J4,

−s4 = J4 + 6

35
(6J 2

2 − χ − J2χ)+ 1548

385
J 3

2

+ 564

385
χ J 2

2 − 34

77
χ2 J2 − 62

385
χ3

+ 274

77
J2 J4 + 328

231
χ J4,

−s6 = J6 + 30

11
J2 J4 + 18

11
J 3

2 + 12

77
χ2 J2

+ 6

77
χ J 2

2 + 5

33
χ J4 + 8

77
χ3. (5.12)

This set of equations can be inverted. If one is able to measure accurately the
shape coefficients, thus the successive gravitational moments can be estimated:

−J2 = s2 + 1

3
χ + 1

7
(11s2 + χ)s2 + 27

28
s2s4 + 19

84
χs4

+ 1311

980
s3

2 + 109

980
χs2

2 ,

+J4 = s4 + 6

37

(
χ + 6

5
s2

)
s2 + 274

77
s2s4 + 1548

539
s3

2
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+ 5106

2695
χs2

2 − 18

77
χs4,

−J6 = s6 + 30

11

(
s2s4 + 3

7
s3

2 + 5

18
χs4 + 4

7
χs2

2

)
. (5.13)

In the same way, k and h can be determined. One gets:

k = −7

8
ε2 + 5

8
εq − 35

32
J4 − 53

20
ε3 + 11

4
ε2q − 15

16
εq2

− 89

16
εJ4 + 15

16
q J4 − 63

40
J6,

h = 9

10
ε3 − 2ε2q + 5

4
εq2 + 21

4
εJ4 − 35

16
q J4 + 231

80
J6. (5.14)

5.3.2 Model for a Body of Constant Density

Such a model is a limiting case, and has the greatest gravitational moments (in
absolute magnitude). In real stars, the density is not constant with depth, generally
increasing, so that the formalism is equivalent to transferring mass to the interior,
where the level surfaces are more spherical.

After some algebra, one get

J2 = −1

2
χ(1 − 5

14
χ + 25

98
χ2),

J4 = 15

28
χ2(1 − 5

17
χ),

J6 = −125

168
χ3. (5.15)

5.3.3 The Generalized Roche Model: Stars with a Convective
Zone and Massless Envelope

Let us consider a star with a convective zone (CZ) of radius β in such a manner that
the dimensionless density δ = ρ/ ρ is

δ(β) =
{
δc = β−3

c , 0 < β < βc

0 βc < β < 1
(5.16)

where β is the normalized mean radius of the equisurface, or (s/Req) [see (5.6)].
Within the CZ we get

ε(β) = εc = 5

4
χβ3

c

(
1 + 15

56
χβ3

c + 925

1568
χβ6

c

)
(5.17)
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Table 5.2 Moments of inertia J2 for the eight stars given in Table 5.1, computed through the
generalized Roche model

Star J2

(1) Achernar −1.24 × 10−4

(2) Regulus −1.42 × 10−5

(3) Vega −5.54 × 10−6

id −5.62 × 10−6

(4) Alderamin −4.85 × 10−6

(5) Altair −2.25 × 10−6

id −2.24 × 10−6

id −2.45 × 10−6

id −2.28 × 10−6

(6) Rasalhague −5.67 × 10−6

(7) α Cep −4.07 × 10−6

(8) α Cygni −4.76 × 10−6

Note that (5.19) gives a two orders of magnitude less.

and the corresponding gravitational moments are given by:

J2 = −1

2
χβ5

c

[
1 − 1

3
χ

(
1 − 10

7
β3

c + 3

2
β5

c

)

− χ2
(

23

180
+ 10

63
β3

c + 1
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β5

c + 925
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β6

c

−10

21
β8

c − 5
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β10

c

)]
,

J4 = +15

28
χ2β10

c

[
1 − 2

3
χ

(
1 − 10

7
β3

c + 3

2
β5

c

)]
,

J6 = −125

168
χ3β15

c . (5.18)

We give in Table 5.2 the computed values of J2 obtained in the Roche model for
stars given in Table 5.1.

5.3.4 Polytropic Model of Unit Index n

The gravitational moments have been calculated in [27] and are of the form:

J2 = −0.173273 q + 0.197027 q2 − 0.15q3,

J4 = +0.081092 q2 − 0.15 q3,

J6 = −0.056329 q3.

(5.19)
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Table 5.3 Central density for the stars given in Table 5.1 taking into account their oblateness
(1) (2) (3) (4) (5) (6)

ρc (kg/m3) 132985 128305 123374 122521 127811 123521
(7) (8) (9) (10) (11) (12)

ρc (kg/m3) 119885 120783 122317 122546 121889 125217

Formulas are accurate up to n = 3. They can be easily transformed in terms of χ.
As was shown in the introduction, the polytropic model allows to reach the central
density of the star using the flattening. We give in Table 5.3 the corresponding values
calculated for the stars in Table 5.1.

5.4 Introducing Differential Rotation

5.4.1 Solar Case

The usual centrifugal potential 	c must be rewritten to take into account the
differential rotation, in this case, the problem is no longer conservative, and the
star is baroclinic. However we can postulate that the centrifugal force must derive
from a potential, in such a way that it must be possible to find a function U which
satisfies [28]:

→
F centrifugal = −→∇ U

At a depth rp, one can use an equation of the form

� = �pol

[
1 +

∞∑
i=1

a2i r
2i
p cos2i (θ)

]1/2

(5.20)

which derives from a potential.
Using the solar Greenwich database that records the sunspots position as a function

of time, [29] have computed ai for i = 1 and i = 2, which are:
a2 = +0.442, a4 = +0.056 at the surface (rp = 1) and ωpol = 2.399μrad/s.
The reader will be able to verify the perfect adjustment of the two curves given

by (5.21) and (5.20), using the numerical values given here. Figure 5.2 shows the
rotation rate with depth (from rp = 1 down to 0.75 R�). The inversion of the radial
gradient rotation rate can be seen at θ = 37 ◦ of latitude, within the leptocline. This
mechanism signs the main difference with a stellar structural approach and put in
evidence the key role of the solar gravitational moments J2 and J4.

Those values are in agreement with the usual rotational law taken for the Sun
under the form
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Fig. 5.2 Differential rotation
(velocity rate in nHz versus
the heliographic latitude), for
the solar case and according
to a law deriving from a
potential. The different depth
are listed in the right box.
One can perfectly see the
inversion of the radial
gradient of rotation at θ =
37◦ of latitude (Influence of
the leptocline at 0.99 R�.
See [30]

�(θ) = A + Bsin2(θ)+ Csin4(θ). (5.21)

The coefficient A represents the equatorial rotation rate and the coefficients B and
C measure the latitudinal gradient in the rotation rate, with B representing mainly low
latitudes whereas C represents largely higher latitudes [31]. Best known estimates
of A, B and C, according to several authors, are given in Table 5.2 published in [26].
The following two examples differ from the way sunspots and faculae rotation were
analyzed (coefficients in μrad/s):

A = 2.913, B = −0.283 and C = −0.269 [32],
A = 2.82, B = −0.33 and C = −0.53 [33].
Numerical values are of importance, as a small change could have a relatively

large effect on the implied multipolar moments.3

The rotational potential	c can then be expressed in terms of Legendre’s polyno-
mials

	c = −χ G M

Rsp
[A0 + A2 P2 + A4 P4]

with

3 Helioseismic inversions provide a more realistic rotation profile, albeit less practical, that we
shall recall here. Assuming a solid rotation below 0.66, and a differential rotation above the interface,
one can write:

�(r, θ) = �c + 1

2

[
1 + erf(2 ∗ r − rc

d1

] × (�Eq + a2cos2θ + a4cos4θ −�c), (5.22)

with �Eq = 1, �c = 0.93944, rc = 0.7, d1 = 0.05, a2 = −0.136076 and a4 = −0.145713;
“erf” is the error function. With this profile, the radial shear is maximal at the tachocline. Using
this profile and numerically integrating the equipotentials from the core to the surface leads to a J2
lying between 1.60 10−7 and 2.20 10−7 [34].
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and
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Writing that on the surfaces of constant potential 	 must not depend on the

heliographic latitude, it comes after computations, and accurate up to O(ε3)

J2 = 2

3
ε − 1

3
ε2 + χ A2 − 26

21
χ A2ε (5.25)

and

J4 = −4

5
ε2 + χ A4 − 36

35
χ A2ε − 502

231
χ A4ε (5.26)

where A2 and A4 are determined by the ai .

With the numerical values already given, one obtains A2 = −0.42(4638) and
A4 = +0.028(751) at rp = 1 R�.4 It can be seen from (5.26) that the differential
rotation increases J4.

5.4.2 Differential Rotation on Stars

The latitudinal dependence of the angular velocity on stars can be approximated by:

�2 = �2
eq

[
1 + αk lk

]
, where αk = αks−k, l = (r/s)cos(

π

2
− θ), (5.27)

l being in units of the mean star radius s. New observations by means of interfer-
ometry will permit to determine the αk . Further details can be found in [35].

Another approach is to develop the solar rotation described by (5.21), by means
of a set of disc-orthogonal functions

T 0
1 (sinθ) = 1,

T 1
2 (sinθ) = 5 sin2θ − 1, and

T 1
4 (sinθ) = 21sin4θ − 14sin2θ + 1,

4 There is a sign mistake in [7] p. 23; the slight difference in the estimates is due to the different
values used for the solar radius.
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which leads to the following expansion:

�(θ) = Ā + B̄(5sin2θ − 1)+ C̄(21sin4θ − 14sin2θ + 1). (5.28)

The coefficients Ā, B̄, and C̄ are free of crosstalk, Ā represents the ‘rigid body’
(or ‘mean’) component in the rotation, B̄ and C̄ are the components of the differential
rotation. If the polynomial expansion is terminated at C̄, the coefficients Ā, B̄, and
C̄, are related to the standard A, B, and C coefficients as follows:

Ā = A + (1/5)B + (3/35)C,
B̄ = (1/5)B + 2/15)C,
C̄ = (1/21)C.

Using Legendre polynomials P0, P2 and P4 as a set of orthogonal functions, the
differential rotation can be described by:

�(θ) = D P0 + E P2(cosθ)+ F P4(cosθ). (5.29)

where θ is the co-latitude.
If the expansion is truncated at the third term, the coefficients D, E, and F are

related to the coefficients A, B, C in (5.29) as follows:

D = A + (1/3) B + (1/5) C,
E = (2/3) B + (4/7) C,
F = (8/35) C.

5.5 Moments of Inertia

The principal moments of inertia of a rotation star along the x and y axis with respect
to the z axis are:

C(s) =
∫

τ

(x2 + y2)ρdτ and (5.30)

B(s) =
∫

τ

(y2 + z2)ρdτ (5.31)

whereρ(r) represents the density distribution inside the star (at the surfaceρ(s) ≈ 0).
Equation (5.30) can be rewritten as:

C(s) = 4π

15

s∫

0

ρdr

1∫

−1

[1 − P2(t)] r5(t)dt (5.32)

which is also after some algebra:
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Similarly, one get

B(s) = 8π

15

s∫

0

ρd

[
r5

(
1 − 1

3
ε + 7

18
ε2 − 4

21
k + 1

21
h + 1078

3969
ε3 + 4

63
εk

)]
.

(5.34)
The dynamical flattening (which intervenes in the precession constant) is

given by

H = (C − B) /C (5.35)

Introducing the mass of the star given by

M(a) = 4π

3

a∫

0

ρd[a3(1 − ε)] (a = Req). (5.36)

it results that to first approximation

J2 = B − C

M Req
2 ,

a relation which holds true whatever model chosen for the star’s interior. Putting

η1 = 5

2

χ

ε
− 2, (5.37)

one gets

H = − ε − χ/2

1 − 2
5

√
1 + η1

. (5.38)

Mathematically speaking this equation is an approximate first integral of the well
known Clairaut’s equation.5

5

given by
d2 f

dq2 + 6

q

ρ

D

f

q
− 6

q2

(
1 − ρ

D

)
f = 0, where D is

3

q3

q∫

0

ρq2dq.
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Fig. 5.3 Cross-section of the Sun through its rotation axis, showing its basically circular shape
(upper curve passing below the vertical descending arrow), with a small distortion induced by
the rotation (lower curve passing up the ascending arrow). The radial scale has been magnified
enormously as indicated. The points show actual RHESSI data, which indicates a complex outer
shape. (After [9]. See also [36])

5.6 Conclusion

All the formalism described above allows to compute the gravitational moments for
stars when the shape coefficients are measured, or at least their flattening ε.The mean
density of each star listed in Table 5.1 can be computed, and it is thus possible to go
back to the central density ρc. Finally, the angular momentum A can be derived as it
is directly linked to the gravitational moment of order 2:

Astar = C ∗�, which is also:

Astar = 8π

3
×�eq

R�∫

0

ρr4dr
(5.39)

For the solar case, results are given in Paragraph 7 and are confronted to estimates
deduced by other authors. One of the major result is that A� constraints C and J2.

Stellar rotation is one of the major topic of astrophysics today, and much of
the research is an attempt to adjust theory and observations in order to bring the
two in closer agreement. The preliminarily results presented here, show that the
oblateness cannot be ignored and is crucial to constraint coherent stellar models. As
discrepancies between models and observations have already been noticed, the study
of stellar shapes cannot be bypassed anymore as first pointed out by [35, 37].

The differential rotation, as well as the non homogeneous mass and angular ve-
locity distributions of stars, including the Sun, modify their outer shape. Up to a
recent date, this departure to sphericity has been considered only as a second order
effect in theories of stellar structure. However, the oblateness gets more important
as the differential rotation gets stronger, and this encourage accurate observations of
the stellar shapes.

Concerning the Sun, the equatorial radius is greater than the polar one of some
8.21 mas (i.e. 5950 m or ≈6 km). The differential rotation is not only surfacic, but is
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Fig. 5.4 Rotation rate in the
solar case from the
tachocline to the leptocline.
The gravitational moments
J2 and J4 are critically
dependent on this differential
rotation

anchored deeper in the Sun, so that the successive shells which compose the Sun are
not spherical, the outer shape being rather complex as seen in Fig. 5.3. It results that
the interior of the Sun can be described as going from the surface to the core: (i) a
sub-surfacic thin layer (the leptocline), which is the seat of solar asphericities, radius
variations with the 11-year cycle and the cradle of complex physical processes: partial
ionisation of the light elements, opacities changes, superadiabaticity, strong gradient
of rotation and pressure; (ii) a convective zone that incurs latitudinal shear, with
little radial shear; (iii) a thin transition layer separating the convective zone from
the deeper radiative zone, the solar tachocline, which would experience a rapidly
quenched radial shear that would lead it to be prolate; (iv) a radiative zone rotating
nearly uniformly, with an angular velocity of about 93.5 % of the equatorial angular
velocity; (v) a core rotating at a nearly uniform velocity rate of about twice the
equatorial rotation of the surface. One understand that the observed shape of our star
is far from being spherical, hence the need to accurately measure the solar shape
coefficients (Fig. 5.4).

For the solar case, the results show that the exact shape critically depends on the
rotation of the external layers. Moreover, the oblateness owing to differential rotation
is larger when the radial gradient of rotation (d�/dr ) is<0 and decreases when this
gradient is >0. The inversion is produced at around 40◦ of latitude [30]. Analytical
differential rotation models lead to a significantly lower value of the flattening in
comparison to a uniform rotation model; this can only be interpreted in terms of
a positive outward rotation gradient in the subsurface (otherwise the differential
rotation increases the flattening [38].) We want to emphasize here that J2 and J4
are very sensitive to differential rotation, both at the surface and in depth. From our
analysis, we believed that the order of magnitude of J4 is less than those deduced
from equations of stellar structure and more in accordance with the values deduced
from observations by [39], i.e.: J2 = 1.84 ×10−7 and J4 = 9.83 ×10−7 (correct
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order of magnitude). We must add that ε is time dependent, so that Jn must be also
time dependent.

Furthermore, results show that it is impossible to conciliate other estimates than
those founded there, for�r, J2, A� and J4, taking into account accepted values of s
and�eq. Conflicting results are obtained when changing these last values, especially
when computing moments of inertia, H, B and C. Is it for this reason that no estimates
of these parameters are given in the literature?

We encourage observations of oblate stars—to transpose what is observed within
the Sun—in order to determine their equatorial and polar radius, through existing
facilities such as the CHARA array, the Keck interferometer, the Navy prototype
Interferometer (NPOI) or the Palomar Testbed Interferometer PTI). A catalogue of
67 prospective rotationally distorted stars has been given by Van Belle et al. (2006)
who gave a rough estimate of the ratio Rpol/Req based upon a simplification of an
expression describing self-gravitating rotationally distorted gaseous masses:

vsin i ≈ (2G M/Rpol × (1 − Rpol/Req))
0.5.

In the case of Altair, the approximation gives 1.14 instead of 1.16 observed.
Further prospects concern the way to take into account magnetic fields.

5.7 Computations for the Solar Case

Masse M = 1.989 ×1033 g (Allen, 2000) 6

G = 6.67259850 ×10−11m3kg−1s−2

�eq = 2.850 µrads−1

�pol = 2.399 µrads−1

Req = 695509.9835 km
Rpol = 695504.0331 km
�r = 5950.(336) m
Rsp = 695508.0003 km
ε = 8.56 ×10−6

β (surface) = 0,999997148206
χ = 2.05904734 ×10−5

q = 2.05906496 ×10−5

5.7.1 Results

Constant density model; this model gives an upper limit for the gravitational moments

6 Or 1.9891 ×1033 g ± 0.0004 (Cohen and Taylor, 1984).
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J2: −1.03 × 10−5

J4: +2.27×10−10

J6: −6.50 × 10−15

Polytrope of index n = 3

J2: −3.57 × 10−6

J4: +7.68 × 10−12

J6: −4.92 × 10−16

Convective zone and massless envelope

Surface Core (r = 0.485) Core (r = 0.22 )
(M = 87.7%) (M = 39.9%)

β: 0.999997148 0.999999545 0,999999868
J2: −1.030 × 10−5 –1.215×10−6 –2.47×10−7

J4: +2.271×10−10 +2.936×10−12 +1.21×10−13

J6: −6.495 × 10−15 –1.067×10−17 –8.96×10−20

Differential rotation

χ : 1.631 × 10−5 (with � = 403.701nH z)
J2: −1.219(5)× 10−6(†)
J4: +4.68(9)× 10−7(†)

(†) J2 = –2.613×10−7 and J4 = +6.29×10−7: [40].
J2 ≈ + 2.22 ×10−7, J4 = ≈ - 4.44 ×10−9 and J6 = ≈ - 2.79 ×10−10 [41], using

a model of the interior structure and of solar rotation obtained from helioseismic
inversions. The value of J2 for non-uniform rotation (≈ + 2.21 ×10−7) found by
[41] for� = 435 nHz is close to the value obtained by Pijpers (1998, MNRAS, 297,
76) (≈+2.18 ×10−7) using a seismically determined rotation profile �(r, θ), and
also in close agreement with the value obtained by [42] (≈+2.15 ×10−7).

However, [43] using a vector harmonic solution for the total potential found J2 =
−2.22 × 10−7 and J4 = +3.84 × 10−9.

The difference in the sign is not only a question of convention. Results strongly de-
pends on the rotation. Other perturbations in the rotation profile are needed to reduce
the theoretical multipolar moments deduced from the equation of stellar structures to
match the observations. Without additional constraints there appears to be no unique
solution for the interior rotation that recovers both the oblateness and hexadecapole
shape. We must emphasize that s2 is always <0, s4 always >0, so that J2 must be
<0 and J4 > 0.

Thus, with our values, it comes:

H = −1.6718 × 10−5

C = 7.01(9)× 10+46 kg m2
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A = 1.92(3)× 10+48 g cm−2 s−1. It must be noted7

with� = 436.07 nHz (2.74 rd/s)(‡). One can verify that ε = 8.47×10−6 (= 3
2 J2 +

1
2χ, with χ = 2.05904734×10−5, to first order).

(‡)Other values are as followed:

1.94 × 10+48 : [44];
1.91 × 10+48 : [45].

It is not possible to match both C, A and J2 with the Roxburg’s estimates. In
addition, εSun = 1.02953 ×10−5 leads to J2 strictly = 0. It results that, εSun being
less than the former estimate just mentioned, J2 must be < 0.

Annex 1: Equation of the Spheroid

The equation of an ellipsoid of revolution is given by:

r2(θ) cos2θ

R2
eq(1 − ε)2

+ r2(θ) sin2θ

R2
eq

= 1 (5.40)

Expanding r(θ) in powers of ε, we obtain

r(θ) = Req

[
1 − εcos2θ − 3

2
ε2(sin2θ cos2θ) + 1

8
ε3(1 − 5sin2θ) sin22θ + · · ·

]

(5.41)
Designing by k(Req) and h(Req) the second-order and third-order corrections,

(5.41) becomes8

r(θ) = Req

[
1 − εcos2θ − (

3

8
ε2 + k)sin22θ

+1

4
(
1

2
ε3 + h)(1 − 5sin2θ) sin22θ + · · ·

]
.

(5.42)

Inserting this development of the radius vector r(θ) in the expression of the total
potential one obtains

	tot = −G M

Req
[1 + a(ε, θ)+ b(ε, θ)J2 + c(ε, θ)J4 + · · · ] (5.43)

Jn represents the gravitational moments(see 5.7). On the equilibrium surface,	tot
must be constant (i.e. independent from θ), so that the Jn coefficients must vanish
(see 5.14).

7 The estimate based on surface rotation alone [46] is 1.63×10+48, which is about 15% smaller.
The average angular momentum as a function of radius (and latitude) basically determined by the
solar model that provides the density as a function of radius.
8 Truncated at the order 3, and putting h = 0, (5.42) represents the so-called Darwin-de Sitter
spheroid equation.
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Annex 2: Roche’s Model

The stellar equipotential surfaces of a body of mass M rotating at constant angular
velocity � are described by

	(θ) = �2 R2(θ)sin2(θ)

2
+ G M

R(θ)
= G M

Rpol
(5.44)

Introducing the degree of sphericity D = Rpol/Req, which relates the inverse of
the oblateness to the polar radius, (5.44) can be rewritten as

r3(θ)− r(θ)

(
1

1 − D

)
1

sin2(θ)
+

(
D

1 − D

)
1

sin2(θ)
= 0 (5.45)

where r(θ) designs the normalized radius ≡R(θ)/Req. Solution of (5.45) is obtained
through hypergeometric series of argument ς given by ς2 ≡ 2 (1−D)

D ( 3D
2 )

3sin2θ [47],
which determine the stellar shape. Lastly, it can be useful to remember the quantities
relating critical and non-critical parameters. The critical or break-up velocity for the
Roche’s model is attained when the centrifugal and gravitational forces are equal.
this leads to the following set of equations:

Rc

Rp
= 3

2
≡ Dc

vc = �c Rc =
√

G M

Rc
=

√
G M

(
2

3Rp

)

veq

vc
= √

3 (1 − D) = �

�c

Req

Rc
≡ ω

Req

Rc

�c = vc

Rc
=

√
8G M

27R3
p

�

�c
= ω = √

3(1 − D)

(
3

2
D

)

One will note that the angular (�) and linear (v) velocities are linked by
� = v/R(sin i).
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Chapter 6
From Helioseismology to Asteroseismology:
Some Recent Developments

Sylvie Vauclair and Mélanie Soriano

Abstract While variable stars have been observed and analyzed for more than two
centuries, the study of solar-type oscillations is new and presently blooming. In this
introductory presentation, we first recall the general basis for asteroseismology, the
so-called “asymptotic theory” of stellar oscillations and discuss important deviations
from this theory. Then we focus on solar-type stars and give two examples for which
it was possible to derive precise stellar parameters from seismology, specially the
helium abundance, which is not obtained in these stars from spectroscopy alone.
The potentiality of asteroseismology for a better knowledge of stellar structure and
evolution is huge, and many new results are expected in the near future.

6.1 Introduction

If we define asteroseismology as the general study of stellar oscillations, we must
recall that this thematic began long before the discovery of the solar oscillations. At
that time, astronomers spoke of “variable stars” or “pulsating stars”, and they only
detected large amplitude oscillations.

The first Cepheid was discovered as soon as 1786 by the English astronomer John
Goodricke. One century later, Henrietta Swan Leavitt, a lady who worked at the
Cambridge Harvard College Observatory under the supervision of the astronomer
Edward Pickering, discovered many of these variable stars and found a clear relation
between their intrinsic luminosities and their periods. Henrietta Leavitt understood
the potentiality of this relation to determine stellar distances, but she was not allowed
by her boss to go on in her way. Some decades later, the period-luminosity relation
of Cepheids and the luminosities of RR Lyrae stars were used by Harlow Shapley, as
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well as many other astronomers, to determine stellar distances. It is still one of the
most important distance estimators in the Universe.

Nowadays, variable stars are known all other the HR diagram. They can be clas-
sified according to:

• the type of waves which leads to their oscillations, either pressure of gravity waves
or both

• their amplitudes
• their excitation mechanisms

Before the first discovery of solar oscillations, solar type stars were not supposed
to be variable, as the acoustic waves are damped out. We now know that stochastic
excitation induced by convective motions leads to permanent destabilisation so that
these stars behave like resonant cavities in spite of the waves damping.

The first report of a periodic solar velocity field was given by Leighton et al. [1].
They wrote that: “The vertical velocities exhibit a striking repetitive time correlation,
with a period T = 296 ± 3 s. This quasi-sinusoidal motion has been followed for
three full periods in the line Ca λ 6103, and is also clearly present in Fe λ 6102,
Na λ 5896, and other lines. The energy contained in this oscillatory motion is about
160 J cm−2; the “losses” can apparently be compensated for by the energy transport
. . . A similar repetitive correlation, with nearly the same period, seems to be present
in the brightness fluctuations observed on ordinary spectroheliograms . . . ”

Evidences of the five minute oscillations were later confirmed by Ulrich [2] and
Leibacher and Stein [3]. Some ten millions p-modes are observed, with frequen-
cies around 2–4 mHz, velocity amplitudes about 1 cm s−1 (max 20 cm s−1), relative
variations of brilliance 10−7, mode lifetimes of a few hours up to a few months.

We will not present here detailed studies of helioseismology, which are out of
the scope of this introductory paper and will be discussed elsewhere, neither will we
give a complete review of the asteroseismology of solar type stars. In the following,
we first recall the basics of stellar oscillations (a more complete discussion may be
found in “Lectures notes on stellar oscillations”, by Christensen–Dalsgaard). Then
we will discuss the so-called “asymptotic theory” and important deviations from it.
Finally we will give some examples of the asteroseismology of recently observed
main sequence stars.

6.2 Basics of Stellar Oscillations

The oscillations are considered as the propagation of a perturbation in a fluid. The
gas is treated as a continuum, its properties are function of the displacement −→r and
time t. The basic equations of hydrodynamics are used and linear perturbations are
performed. Some manipulations of equations and some approximations finally lead
to the wave equation.
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6.2.1 Some Hydrodynamics

• Equation of continuity

∂ρ

∂t
+ div(ρ−→v ) = 0 (6.1)

• Equation of motions

ρ

(
∂−→v
∂t

)
+ (−→v −→∇ .−→v ) = −−→∇ P + ρ

−→g (6.2)

where the viscosity is neglected.

The vector −→g is the gravitational acceleration that can be written as:

−→g = −−→∇�, (6.3)

where � is the gravitational potential that satisfies the Poisson’s equation:

∇2� = 4πGρ (6.4)

• Energy equation

dq

dt
= d E

dt
+ P

dV

dt
, (6.5)

where E is the internal energy per unit of volume. This equation can be rewritten
with thermodynamic variables:

dq

dt
= CV

[
dT

dt
− (�3 − 1)

T

ρ

dρ

dt

]
(6.6)

= CP

[
dT

dt
− �2 − 1

�2

T

P

d P

dt

]
(6.7)

= 1

ρ(�3 − 1)

[
d P

dt
− �1 P

ρ

dρ

dt

]
(6.8)

where CV and CP are the specific heat capacities, respectively at constant volume
and under constant pressure. The adiabatic indices are defined by:

�1 =
(
∂ ln P

∂ ln ρ

)
ad
,
�2 − 1

�2
=

(
∂ ln T

∂ ln P

)
ad
, �3 − 1 =

(
∂ ln T

∂ ln ρ

)
ad

(6.9)

In the adiabatic case, (6.5) becomes:

d P

dt
= �1 P

ρ

dρ

dt
(6.10)
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6.2.2 Linear Perturbations

Stellar oscillations have very low amplitudes compared to the characteristic scales
of a star. They can be treated as small perturbations around an equilibrium state. For
a variable x we have, with an eulerian description:

x(−→r , t) = x0(
−→r )+ x ′(−→r , t) (6.11)

and with a lagrangian description:

δx(−→r ) = x(−→r0 + δ
−→r )− x0(

−→r0 ) (6.12)

= x ′(−→r0 )+ δ
−→r · −→∇ x0 (6.13)

These perturbations are introduced in (6.1), (6.2), (6.4), and (6.10). The equation
of continuity (6.1) becomes:

δρ + ρ0
−→∇ · δ−→r = 0 (6.14)

The equation of motions becomes:

ρ0
∂2δ

−→r
∂t2 = −−→∇ P ′ + ρ0

−→
g′ + ρ′−→g0 (6.15)

where
−→
g′ = −−→∇�′ and:

∇2�′ = 4πGρ′. (6.16)

Finally, the equation of energy becomes:

∂δq

∂t
= 1

ρ0(�3 − 1)

(
∂δP

∂t
− �10 P0

ρ0

∂δρ

∂t

)
(6.17)

If we consider adiabatic motions, the heat term is neglected, and this equation
turns to:

∂δP

∂t
− �1,0 P0

ρ0

∂δρ

∂t
= 0 (6.18)

6.2.3 Separation of Variables

The displacement
−→
δr is separated in a radial and an horizontal component:

−→
δr = ξr

−→ar + −→
ξh . (6.19)
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We first consider the perturbed equation of motions (6.17). If we compute the
horizontal divergence of its horizontal component, we find a first equation:

ρ0
∂2

∂t2

(−→∇h .
−→
ξh

)
= −∇2

h P ′ − ρ0∇2
h�

′ (6.20)

The equation of continuity can be rewritten as:

ρ′ = −div(ρ0
−→
δr ) (6.21)

= − 1

r2

∂

∂r
(ρ0r2ξr )− ρ0

−→∇h · −→
ξh , (6.22)

We introduce this new expression in (6.20) and we obtain:

− ∂2

∂t2

[
ρ′ + 1

r2

∂

∂r
(r2ρ0ξr )

]
= −∇2

h P ′ − ρ0∇2
h�

′ (6.23)

The radial component of the equation of motions is:

ρ0
∂2ξr

∂t2 = −∂P ′

∂r
− ρ′g0 − ρ0

∂�′

∂r
(6.24)

The Poisson’s equation becomes:

1

r2

∂

∂r

(
r2 ∂�

′

∂r

)
+ ∇2

h�
′ = 4πGρ′ (6.25)

The solutions are expressed with:

ξr (r, θ, φ, t) = √
(4π)ξ̃r (r)Y

m
l (θ, φ) exp(−iωt) (6.26)

P ′(r, θ, φ, t) = √
(4π)P̃ ′(r)Y m

l (θ, φ) exp(−iωt) (6.27)

. . .

ξ̃r , P̃ ′, . . . , are the amplitudes of the solutions. The function Y m
l is a spherical

harmonics defined by:

Y m
l (θ, φ) = (−1)m

√
(2l + 1)(l − m)!

4π(l + m)! Pm
l (cos θ) exp(imφ), (6.28)

where Pm
l are Legendre polynomials.

Equations (6.23), (6.24), and (6.25) become:

ω2
[
ρ̃′ +

(
1

r2

∂

∂r
(r2ρξ̃r )

)]
= (+ 1)

r2 (P̃ ′ + ρ0�̃′) (6.29)
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−ω2ρ0ξ̃r = −d P̃ ′
dr

− ρ̃′g0 − ρ0
d�̃′
dr

(6.30)

1

r2

∂

∂r

(
r2 d�̃′

dr

)
− (+ 1)

r2 �̃′ = 4πGρ̃′ (6.31)

6.2.4 Non-radial Adiabatic Oscillations

To solve the fourth order system more easily, the perturbations of the gravitational
potential are neglected (Cowling’s approximation). The system is then reduced to:

dξr
dr

= −
(

2

r
+ 1

�1
H−1

P

)
ξr + 1

ρc2

(
S2


ω2 − 1

)
P ′ (6.32)

d P ′

dr
= ρ

(
ω2 − N 2

)
ξr − 1

�1
H−1

P P ′, (6.33)

where H−1
P = −d ln P/d ln r is the pressure height scale.

In this expression, two characteristic frequencies have been introduced:

• The lamb frequency S2
 defined as:

S2
 = (+ 1)c2

r2 = k2
hc2, (6.34)

where c2 = �1 P/ρ is the squared value of the acoustic sound speed.
• The Brunt–Väisälä frequency N 2 defined as:

N 2 = g

(
1

�1 P

d P

dr
− 1

ρ

dρ

dr

)
(6.35)

For high radial order oscillations, the derivatives of the equilibrium quantities can
be neglected. The system of (6.34) and (6.35) becomes:

dξr
dr

=
(

S2


ω2 − 1

)
P ′

ρc2 (6.36)

d P ′

dr
= ρ

(
ω2 − N 2

)
ξr (6.37)
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Fig. 6.1 Brunt–Väisälä (solid line) and lamb frequencies for various values of  (dashed lines). The
horizontal lines represent the propagation zones for a 100μHz g-mode, and for a 1000μHz p-mode
with  = 20

which can be combined in:

d2ξr

dr2 = ω2

c2

(
1 − N 2

ω2

) (
S2


ω2 − 1

)
ξr (6.38)

This equation describes the global properties of the oscillation modes and can
provide a good determination of their frequencies. The two characteristic frequencies
play an important role in the behaviour of the oscillations. The evolution of these
frequencies with the radius of the star is shown in Fig. 6.1.

The solution is oscillatory when

|ω| > |N | and |ω| > |S|
or

|ω| < |N | and |ω| < |S|

This induces two classes of modes:

• The high-frequency modes, or p-modes, characterized by: |ω| > |N | and |ω| > S
• The low-frequency modes, or g-modes, characterized by: |ω| < |N | and |ω| < S

6.3 The Asymptotic Theory and Deviations from it

It is possible to compute a more precise second order differential equation in ξr ,
which leads to asymptotic expressions of the frequencies and the eigenfunctions.
This widely used asymptotic theory is discussed below.
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6.3.1 The Asymptotic Theory

Tassoul [4] found the following asymptotic expression for the frequency, at the first
order, valid for large values of n :

νn, � 2π�ν0

(
n + 

2
+ 1

4
+ α

)
(6.39)

with

�ν0 =
⎡
⎣2

R∫

0

1

r
dr

⎤
⎦

−1

, (6.40)

which is the inverse of twice the time needed by the sound waves to travel from the
stellar surface down to the center. This quantity is named the mean large separation,
α is a parameter which depends on the atmospheric structure.

This asymptotic theory gives us a first approximation of the oscillation frequen-
cies. In a real star, there are deviations from this theory and these deviations can
provide information about specific regions of the star.

Large separations and echelle diagram. From the (6.39), we find that two p-modes
of successive radial order n, with the same degree  are approximately separated by
�ν0. We define the large separation as:

�νn, = νn+1, − νn, (6.41)

In the framework of the asymptotic theory, we should have �νn, equal to �ν0.

But deviations from the asymptotic theory induce deviations of �νn, from �ν0.

A useful representation of the oscillation frequencies is the echelle diagram. In
ordinates are plotted the frequencies and in abscissae, the same frequencies modulo
the mean large separation. According to the expression found for the frequency in
(6.39), we should obtain vertical lines corresponding to each value of the degree . In
a real star, there are deviations from the asymptotic theory which are characteristic
of the inner stellar structure.

Small separations. They are defined as:

δνn, = νn, − νn−1,+2 (6.42)

In the framework of the first order of the asymptotic theory, we have δνn, � 0.
But in a real star, there are deviations from this theory and the small separations are
not equal to zero. At second order, Tassoul [4] gives:

δνn, � − (4+ 6)
�ν0

4π2νn,

R∫

0

1

r

dc

dr
dr (6.43)

These quantities are very sensitive to the deep stellar interior (Gough, Roxburgh
and Vorontsov [5, 6]) and can give us interesting information about the stellar core.
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6.3.2 Deviations from the Asymptotic Theory

Soriano et al. [7] derived a different asymptotic expression by doing similar com-
putations as Tassoul [4], but taking into account the fact that different modes do not
always travel in the same stellar regions: the modes  = 0 travel from the center
of the star (r = 0) to the surface, but the modes  �= 0 are trapped between the
surface and their internal turning point rt , whose position depends on the degree of
the mode.

νn, �
(

n + 

2
+ 1

4
+ α

)
�ν − (+ 1)�ν

4π2νn,

⎡
⎣c(R)

R
−

R∫

rt

1

r

dc

dr
dr

⎤
⎦ − δ

�ν2

νn,
,

(6.44)
where α is a surface phase shift, δ a function of the parameters of the equilibrium
model and �ν is defined as follows:

�ν = 1

2
∫ R

rt

dr
c

(6.45)

In this framework, several frequency combinations may be used to probe the stellar
structure. Soriano and Vauclair [8] gave a second order asymptotic expression for the
small separations, which becomes, for the degrees  = 0– = 2 and  = 1– = 3 :

δν02 �
(

n + 1

4
+ α

)
(�ν0 −�ν2)+ I (rt )

[
6�ν2

4π2νn−1,2

]
(6.46)

δν13 �
(

n + 3

4
+ α

)
(�ν1 −�ν3)+ I (rt )

[
�ν1

2π2νn,1
− 6�ν3

2π2νn−1,3

]
(6.47)

where

I (rt ) =
R∫

rt

1

r

dc

dr
dr, (6.48)

Contrary to what was assumed in Tassoul [4] work, these quantities can become
negative [7, 8]. This specific behaviour is related to the presence of a convective core
or to a helium core with sharp edges. We can use this phenomenon to characterize
helium-rich cores and to give strong constraints on the possible overshooting Fig. 6.2.

6.3.3 Second Differences

In regions with an important gradient of the sound velocity, like the boundary of the
convective zone or the HeII ionization zone, there are partial reflexions of the waves
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Fig. 6.2 Sound velocity profile in a 1.1 M� star at the end of the main sequence: the signature of
the helium core clearly appears as a depression in the sound velocity . The  = 0 waves travel
down to the center while the  = 2 waves have an internal turning point which depends on the
mode frequency. The modes for which the turning point is at the edge of the core present a special
behavior and may be the limit above which the small separation become negative

that create modulations on the frequencies. These modulations clearly appear in the
so-called second differences (e.g. [9, 10]) which are defined by:

δ2ν = νn+1, + νn−1, − 2νn, (6.49)

The modulation period of the oscillations is equal to twice the acoustic depth,
which is the time needed for the sound waves to travel from the considered region
to the stellar surface:

ts =
R∫

rs

dr

c(r)
(6.50)

c(R) is the sound velocity at the radius r, and rs the radius of the considered region.
By computing the Fourier transform of the second differences, we can check that

the period of the peaks are twice the acoustic depth of the discontinuities in the
sound speed. As discussed in Castro and Vauclair [11], the behavior of the second
differences is very different if one takes helium diffusion into account or not. When
helium diffusion is not computed, two peaks appear in the Fourier transform: a first
one, close to the surface, is due to the helium ionization zone while a second peak
due to the base of the convective zone can be identified. On the other hand, when
helium diffusion is introduced, the peak due to the helium ionization zone disappears
whereas a strong peak due to the diffusion-induced helium gradient develops. This
is the peak visualized in Fig. 6.3.
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Fig. 6.3 Helium profile (upper-left panel), first derivative of the sound speed (lower-left panel),
second differences (upper-right panel), and Fourier transform of the previous graph (lower-left
panel) for a model of 1.6 M�, 95 Myr, with helium diffusion (from Vauclair and Théado [10])

6.4 Two Examples of Seismic Analyses for Main Sequence Stars

As for exoplanet searches, the methods for stellar oscillations detection and obser-
vations are different from the ground and from space. On the ground, the radial
velocity method is used, with spectrographs like HARPS (La Silla Observatory,
Chile) or SOPHIE (Haute-Provence Observatory, France). In space, we rely on pho-
tometric methods. In the first case, we obtain radial velocity curves, in the second
case light curves. Then we perform Fourier transforms, evaluate the mean large sep-
aration, draw the echelle diagram and compare the observed modes to the results of
the model computations.

We recently focused on the seismology of exoplanet-host stars. All the exoplanet-
host stars that we have observed, using the radial velocity method, proved to have
oscillations. Four of these stars have been observed for a long enough time to be
analyzed in detail (more than 1 week), i.e. μArae (HARPS, 2004), ιHor (HARPS
2006), 51 Peg (SOPHIE 2007) and 94 Ceti (HARPS 2007). The first results obtained
for the CoRoT main target HD52265, using the photometric method, also show
evidences of oscillations. Here we discuss the cases of two exoplanet-host stars for
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Fig. 6.4 Radial velocity measurements (left panel) and their power spectrum (right panel), for the
star ιHor (from Vauclair et al. [12])

which the seismic analysis have been completed and give interesting results (ιHor
and μArae).

In both cases, computations have been performed for various values of the metal-
licity and helium abundance. For each abundance set, several evolutionary tracks
have been computed, for different stellar masses. Comparisons of the observed and
computed echelle diagrams lead to a best model for each of these tracks, and a best
of the best models for the abundance set. Then the effective temperatures, gravities
and luminosities of the best models obtained for all metallicities and helium values
are compared with the spectroscopic error boxes. With such a method, we were able
to evaluate the helium content of these two overmetallic stars. We found evidence
of a low helium abundance (lower than solar) for ιHor while the helium abundance
obtained for μArae is high, as expected from chemical evolution of galaxies.

6.4.1 The Star ι Hor

The case of the exoplanet-host star ιHor was discussed by Vauclair et al. [12]. This
star belongs to the Hyades stream: it has the same kinematical characteristics than
the Hyades cluster in the Galaxy. ιHor was observed in November 2006 with the
HARPS spectrometer, in La Silla Observatory (Fig. 6.4). The analysis of the radial
velocity time series led to the identification of 25 oscillation modes.

A seismic analysis of this star was carried out as described above, by computing
models for various values of the metallicity and helium abundance, and comparing
with the observations. The results are given in Fig. 6.5 and Table 6.1.

The values seismically obtained for ιHor are also characteristic of the stars which
belong to the Hyades cluster [13]. As ιHor also behaves like the Hyades cluster in the
Galaxy, although situated 40 pc away from it, we concluded that this exoplanet-host
star was formed together with the cluster and evaporated. These results also lead to
the conclusion that its overmetallicity was primordial and not due to accretion of
planetesimals.
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Fig. 6.5 Log g–Log Teff
diagram, for the star ιHor.
The spectroscopic error
boxes are presented, as well
as six different “best
models” for various
metallicity and helium
content (from Vauclair et al.
[12]). The models satisfying
the spectroscopic observed
parameters have a low
helium abundance

Table 6.1 iota Horologii: parameters of the three best models (cols. 2−4), compared to the Hyades
values (col. 5, Ref.: Lebreton et al. [12]; from Vauclair et al. [13])
[Fe/H] 0.19 0.19 0.14 0.14 ± 0.05
Y 0.271 0.255 0.255 0.255 ± 0.013
Age (Myr) 620 627 627 625 ± 25
Mass (M�) 1.24 1.26 1.25
Teff (K) 6179 6136 6189
Log g 4.40 4.40 4.40
Log L/L� 0.245 0.237 0.250

6.4.2 The Star μ Arae

The exoplanet-host star μArae (HD 160691) is a G3 IV–V type star, with a visual
magnitude V = 5.15 (Simbad astronomical Database). A first value of the parallax
was initially derived by Perryman et al. [14]:π = 65.5±0.8 mas.This value was used
by Bazot et al. [15] to determine the parameters of this star. Recently, a new analysis
of the Hipparcos data was achieved by Van Leeuwen [16], who found a new value
for the parallax: π = 64.48 ± 0.31 mas. This new value was used by Soriano and
Vauclair [17] (herafter SV10) to derive an absolute magnitude of MV = 4.20 ± 0.04
and a luminosity of log(L/L�) = 0.25 ± 0.03.

Five groups of observers (references in SV09) have derived different values of
external parameters (Teff, log g and metallicity).

This star was observed in 2004 with the HARPS spectrograph to obtain radial
velocity time series (Fig. 6.4). These seismic observations led to the identification of
43 p-modes for degrees  = 0 to  = 3 [18].

SV09 performed a new seismic analysis of this star, using the same method as for
ιHor (Fig. 6.6). The results are given in Fig. 6.7 and Table 6.2.
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Fig. 6.6 Radial velocity measurements (left panel) and their power spectrum (right panel), for the
star μArae (from Bouchy et al. [18])

Fig. 6.7 Log g–Log Teff
diagram, for the star μArae.
The spectroscopic error
boxes are presented, as well
as different “best models”
obtained for various
metallicity and helium
content (from Soriano and
Vauclair [17]). Contrary to
the case of ιHor, the models
satisfying the spectroscopic
observed parameters have a
high helium abundance

Table 6.2 Parameters of μ Arae (from Soriano and Vauclair [17])
M/M� 1.10 ± 0.01 Teff (K) 5820 ± 40
R/R� 1.36 ± 0.01 [Fe/H] 0.30 ± 0.01
Log g 4.215± 0.005 Y 0.301 ± 0.01
L/L� 1.90 ± 0.10 Age (Gyr) 6.34 ± 0.40

Contrary to the case of ιHor, the results forμArae give evidence of a high helium
abundance in this star. SV10 also computed models with overshooting, treated as an
extension of the convective core. They found that the overshooting extent cannot be
more than 5% of the pressure height scale.
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6.5 Conclusions

Asteroseismology is a blooming science, which brings a new dimension to the study
of stellar structure and evolution. In this introductory paper, we focused on solar-type
stars. We showed that precise parameters can be obtained, as well as constraints on
the stellar interiors. In particular, crossed comparisons between seismic and spectro-
scopic observations can lead to the helium abundance, in stars for which it cannot
be determined directly from spectroscopy alone. We have also access on precise
determinations of the masses, gravities and therefore radii of these stars.

For the two stars that we have presented here, two very different results have been
obtained for helium. One of these stars (ιHor) has a low helium abundance (Y of
order 0.255), in spite of its high metallicity (about a factor 2). This is difficult to
explain in terms of the chemical evolution of the Galaxy, but it is also the case for all
the stars of the Hyades cluster. We found that this star must have been formed with
the cluster and evaporated. The second star, μArae, has a high helium abundance
(Y of order 0.3), consistent with its surmetallicity in the framework of the chemical
evolution law. These examples show how important maybe the consequences of
seismic results for stars.

Precise determination of stellar parameters needs long time observations of these
stars. More than one week is needed when using the radial velocity method (as
with HARPS or SOPHIE). More than one month is better from space, using the
photometric method. Statistical analysis methods have been proposed to rapidly
derive parameters for a large number of stars [19]. These methods rely on general
variations of frequency combinations with mass and age of the stars. They are not
precise however, as real stars can deviate from these average relations. For the future,
multisite campaigns would be helpful, like those proposed with the SONG network.
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Chapter 7
Issues Relating to Observables of Rapidly
Rotating Stars

Robert G. Deupree

Abstract I discuss several ways in which rapid rotation can make the interpreta-
tion of what is observed complex and outline computational tools which are being
brought to bear on the problem. The first requirement is to develop the capability
for computing the fully two dimensional stellar structure. Once this is available the
pulsation periods and the spectral energy distribution of the models must be calcu-
lated without resorting to commonly used approximate methods which are adequate
if the rotation is a relatively small perturbation to the nonrotating model. A family
of computational tools which perform these tasks is presented along with results on
the structure of two dimensional rotating stellar models, the effects of rapid rotation
on the low order p modes, and on the spectral energy distribution.

7.1 Introduction

In this paper I wish to explore the requirements for a self consistent interpretation
of the collection of observables related to rapidly rotating stars. If a star is rotating
sufficiently rapidly, nearly every feature we can observe will be affected by the
rotation. Assuming the star is otherwise static, rapid rotation through the centrifugal
force will affect the force balance and hence the structure of the star. Just these
changes will affect the quantities which depend on the stellar structure, for example
the luminosity produced and any oscillation frequencies which might be observed.
Rotation also changes the surface from a spherical to a spheroidal, and possibly in
some cases an ellipsoidal, shape. This change in shape is accompanied by a variation
in the emergent flux, at least in radiative regions, with latitude, as first realized by
von Zeipel [1]. The net result is that more flux flows out of the surface at higher
latitudes (which thus have higher effective temperatures). This asymmetry means
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Fig. 7.1 Plot of rotation rate
versus surface equatorial
velocity. The two are linearly
proportional at slow rotation,
but the large increase in the
surface equatorial radius
with small changes in the
rotation rate changes the
relation at high rotation.
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that everything we observe based on the light from a rapidly rotating star depends on
the inclination, i, between the rotation axis and the observer, something which must
itself be determined from the data. Included in these observables are the luminosity
and effective temperature we would deduce, and the spectral energy distributions,
including the line profiles. The one set of observables which are not affected by the
inclination is the collection of oscillation frequencies, although the deduction of what
mode a given frequency corresponds to might well be.

These various effects become important at different rotational velocities, leading
me to divide the effects of rotation into three categories. Throughout this work I will
use a collection of 10 and 12 M� ZAMS models at different rotation rates to quantify
these effects. Because most people think in terms of the surface equatorial velocity
(Veq), I will use this parameter to quantify the amount of rotation. However, it is the
rotation rate (�) in terms of the critical rotation rate (�c), that rate at which gravity
just balances the centrifugal force on the surface at the equator, which is the scaled
variable of importance. Where useful, I will give the appropriate surface equatorial
velocity with the ratio of the rotation rate to the critical rate in parenthesis.

The relationship between the surface equatorial velocity and the rotation rate is
shown in Fig. 7.1. At low rotation rates the surface equatorial velocity is nearly lin-
early proportional to the rotation rate, but near the critical rotation rate slight increases
in the rotation rate translate into sizeable increases in the surface equatorial velocity.
The reason is that the surface equatorial radius increases only slightly with increasing
rotation rate at low rotation but increases dramatically near critical rotation.

The three categories correspond to slow, moderate and rapid rotation.
For slow rotation, for which I will assign Veq ≤ 100 km/s (� �c ≈ 0.25 for my
10 M�ZAMS models), the effects of rotation are relatively marginal. The
surface asphericity is small, making the inclination effects small, and the effects of
rotation on the oscillation mode frequencies are small. Moderate rotation,
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100 km/s ≤ Veq ≤ 300 km/s (� /�c ≈ 0.69), produces a noticeable inclination
dependence and some of the oscillation frequencies require a more complex treat-
ment than the usual methods for slow rotation. For example, the deduced log L
varies by about 0.2 when seen pole on compared to when seen equator on for a sur-
face equatorial rotational velocity of 300 km/s. This corresponds to a one solar mass
uncertainty at ten solar masses if I assume the star being observed is not rotating.
Rapid rotation is any rate higher than 300 km/s, for which rotation appreciable alters
nearly all the observable properties of the star.

In order to model these properties, I need a variety of computational tools. I will
first describe the modeling tools with which to deduce information about moderately
and rapidly rotating stars and then discuss the effects of rotation on these properties.

7.2 Modelling Tools

What modeling tools are required to include the effects of rotation? First, I must be
able to produce structural models of rotating stars. This can actually be done in a
quasi one dimensional framework for conservative rotation laws (e.g. Monaghan and
Roxburgh [2], Roxburgh et al. [3], Faulkner et al. [4], Kippenhahn and Thomas [5],
Sackmann and Anand [6]) because the state variables are constant on equipotential
surfaces. The solution is particularly easy if the distortion in the deep interior is suffi-
ciently small that the gravitational potential can be treated as spherically symmetric.
This is close to the truth for all uniformly rotating models, even those near critical
rotation. The situation is somewhat more complicated for differential, but still conser-
vative, rotation laws for which the gravitational potential must be computed in a two
dimensional (2D) framework. This has been done for some time (e.g., Clement [7];
Jackson et al. [8]). These calculations tend to use the self consistent field approach
[9] in which one iterates between solving Poisson’s equation for the gravitational
potential, given the current density distribution, and the stellar structure equations.
However, such calculations do not really help solve the problems that make rotating
stars different from nonrotating ones—the collection of hydrodynamic and secu-
lar (i.e., thermal time scale) instabilities (e.g., Endal and Sofia [10, 11]) which can
redistribute the angular momentum and the composition within the star.

Two separate computational tools are required to deal with these instabilities.
There is probably no complete substitute for a 3D hydrodynamics, and possibly
magnetohydrodynamics, code to compute the hydrodynamic instabilities. Including
the whole star in the calculation probably means that only an explicit hydrodynam-
ics code is necessary, because there will probably be reasonably high speed (some
reasonable fraction of the local sound speed) flows somewhere in the model. If one
includes only a part of the star in the model, such as the convective core, one probably
needs to perform an implicit calculation (to avoid the Courant condition) or at least
impose the anelastic modal approximation to keep the time steps sufficiently large to
compute the hydrodynamic effects in a reasonable amount of computer time. Even
under these conditions it is unlikely that these calculations can be carried sufficiently
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far in time to determine the precise effects on the long term angular momentum and
composition redistributions, so some extrapolation of the results will be required.

The second tool required is a 2.5D stellar evolution code capable of simulating
the large scale flows associated with thermal instabilities. The extra half dimension
means that there is an azimuthal momentum conservation equation, even though
azimuthal symmetry is maintained. This is required to determine the effects of the
instabilities on the angular momentum distribution. Because the motions associated
with secular instabilities are expected to be well subsonic, this calculation needs
to be implicit to avoid the time step constraints of the Courant condition. I have
been working on such a code sporadically for a considerable period of time [12–
14], and the major difficulty has been the treatment near the stellar surface. An early
solution for meridional circulation currents found by Sweet [15] for uniform rotation
revealed that the circulation velocity would become infinite at the surface. Baker and
Kippenhahn [16] showed that the rate at which the velocity went to infinity was even
worse for differential rotation. Considerable work by Smith [17, 18] showed that more
realistic treatments of the atmosphere could make the velocity there finite, although
it still remained large. Tassoul and Tassoul [19, 20] argued that high velocities near
the surface would generate turbulence, and that the turbulent viscosity would limit
the amplitude. It is not universally accepted that turbulent viscosity is the only or the
complete answer [21, 22], and disagreements remain [23]. Large velocities near the
surface limit the ability to perform time dependent calculations on an evolutionary
time scale, and some methods have been developed which limit this problem, albeit
with a reduction of realism in the treatment near the surface.

It is reasonable to ask why one does not perform a full 3D implicit stellar evo-
lution calculation. The primary reason is numerical. The azimuthal motion in a 3D
calculation will generate an accuracy constraint that the time step be less than the
minimum over all the cells of the azimuthal zoning divided by the azimuthal veloc-
ity. This azimuthal velocity is just the rotational velocity, which will be large for
sufficiently rapidly rotating models. One might think that this could be avoided by
performing the calculation in a rotating coordinate system, but then the velocity in
the constraint above would be just the difference between the local rotational velocity
and the rotation velocity that corresponds to the rotational velocity of the coordinate
system. Thus, once there is a noticeable departure from uniform rotation, the time
step would become far too small to be able to perform even implicit calculations that
cover secular and evolutionary time scales.

With the large scale flow version of my 2.5D evolution code still under devel-
opment and testing, here I shall restrict my discussion to ZAMS models with an
imposed rotation law and no motion other than the rotation itself.

Once a suitable model has been computed, several tools are required to compute
information which can be compared with observational data. One such tool would
compute oscillation frequencies for the model. Because my interest is in moderately
and rapidly rotating stars, I want to avoid the usual assumptions of perturbation theory
and a single spherical harmonic employed in these calculations for rotating stars. The
tool I am using is a linear, adiabatic pulsation code developed by Clement [24] and
updated to include differential rotation by Lovekin et al. [25]. This assumes that the
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latitudinal variation of the eigenfunctions can be written in terms of a finite number
of spherical harmonics (for azimuthally symmetric rotating models the azimuthal
quantum number, m, is still valid). The number of spherical harmonics included is
user determined. More provide greater accuracy of the eigenfrequency but make it
harder to determine a given mode’s relation to modes in other models (for example,
models of the same mass and evolutionary state but rotating slightly slower or faster).

The remaining observables come from the spectral energy distribution (SED).
With rotation the SED observed is produced by a weighted integral of the emitted
intensity in the direction of the observer from all the locations on the stellar surface
visible to the observer. The effective temperatures and effective gravities at these
locations differ, pronouncedly so if the rotation is sufficiently large. Any attempt to
relate any component of the SED to the stellar properties must be interpreted through
this distorting lens. In order to make this interpretation, two tools are required. The
first is a model atmospheres code which provides the emergent intensity at each point
on the stellar surface, and the second is a code to perform the integral to obtain the
SED that would be observed as a function of inclination.

I have already made an implicit assumption that a 1D model atmosphere code
(and plane parallel as well) will provide the emergent intensity. This will be a good
approximation as long as the horizontal variation over a photon mean free path is
small. In fact this holds quite well until the rotation rate is very close to critical and
the surface of the model near the equator quite extended. Even here it may not be
too bad an assumption because most of the light making up the SED will come from
the much higher intensity areas at mid and high latitudes. The model atmosphere
code chosen is the PHOENIX code [26], which is distinguished by the large number
of energy levels allowed to be in non local thermodynamic equilibrium (NLTE).
This certainly was a reason in the selection, as was the availability of a local user of
PHOENIX at Saint Mary’s. I have utilized PHOENIX to compute a grid of model
atmospheres to produce the emergent intensity as a function of wavelength, angle
from the local vertical, effective temperature, and effective gravity.

These PHOENIX results provide part of the integrand that goes into computing
the observed SED. The remainder is merely geometry and the integral is given by

Fλ(i) =
∫ ∫

Iλ1(ξ(θ, φ, i))W (λ, λ1)

d2 d Aproj(θ, φ) (7.1)

where Fλ is the flux observed at a given wavelength and Iλ is the emergent
intensity emitted from the stellar surface at a location identified by the spherical polar
coordinates (θ, φ) and emitted in the direction of the observer. This direction is given
by the angle ξ, which is the angle between the surface normal and the direction to
the observer and thus depends on the local surface shape, the specific location on
the surface, and the direction to the observer. Of course, the integrals over θ and φ
include only those combinations for which the local surface is visible to the observer.
The Doppler shift is indicated by the function W, and d Aproj is the projected surface
area. The distance between the star and the observer is d. Experience has shown that
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dividing the surface into about 80000 zones provides adequate resolution. The SED
is just this flux distribution over all the wavelengths.

To obtain a SED in its most usable form, we require many wavelengths. The
spectrum is generally computed over the wavelength region 300–10000 Å for our
intermediate mass ZAMS models with a resolution of 0.02 Å. These are fortunately
all independent if we are interested in broad band results so that we can ignore the
Doppler shift, but including the Doppler shift introduces only a modest dependence
among neighboring wavelengths. This modest dependence can be treated in such a
way (see Lovekin and Deupree [27]) to keep the integration “embarrassingly parallel"
so calculating the integral requires only a modest amount of computer time with a
relatively small number of processors on a relatively slow interconnect computer
cluster. This is a small penalty to pay for removing any reliance on poorly known
limb and gravity darkening laws.

We may integrate the SED over wavelength to deduce a luminosity and use
the shape of the spectrum to deduce an effective temperature. As has been long
known (e.g., Collins [28], Collins and Harrington [29], Hardorp and Strittmatter
[30], Maeder and Peytremann [31]) these deduced quantities will vary with inclina-
tion. In particular, the luminosity deduced may have only a modest relation to the
luminosity actually emerging from the star.

I now turn to using some of these tools to determine properties related to rotating
stellar models.

7.3 Results from Rotating Stellar Models

7.3.1 Structural Results

I shall consider only 10 M� ZAMS models with Z = 0.02. The equation of state
and opacity tables are taken from the OPAL tables [32, 33]) and the pp and CNO
reaction rates are given by the composite rates of Fowler et al. [34]. The reason
for using these composite rates is that the time dependent composition equations
for those species important for energy production must be solved simultaneously
with the other conservation laws for numerical stability and therefore the number of
composition equations must be kept to a minimum. With these composite rates, I
need to include only a hydrogen conservation equation for main sequence evolution.
The ZAMS models are obtained from the imposed rotation law by solving the time
independent conservation laws with the radial and latitudinal velocities set to zero.
I shall include two rotation laws: uniform rotation and a particular conservative law
in which the rotation rate decreases with increasing distance from the rotation axis.
The differential rotation law is a generalization of one taken from Jackson et al. [8]:

�(�) = �0

1 + (a�)β
(7.2)
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Fig. 7.2 Variation in the
rotation rate as a function of
distance from the rotation
axis for the rotation law
given in (7.2) with a = 2. The
distance from the rotation
axis is given in units of the
surface equatorial radius.
The rotation rate is scaled in
units of the rotation rate for
uniform rotation.
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and is plotted in Fig. 7.2. This rotation law was studied because Jackson et al. [8]
found that they could obtain the observed interferometric shape for Achernar deduced
by Domiciano de Souza et al. [35] with models using it. While further research has
indicated that the observed shape may be due to a circumstellar envelope (e.g.,
Vinicius et al. [36], Kanaan et al. [37], Kervella et al. [38]), it does raise the question
of how one might be able to verify such a rotation law from other information.

From the resulting models I can obtain structural information, synthetic SEDs, and
selected oscillation frequencies. The intent here is to examine how these quantities
vary as the rotation law changes.

I show the surface shape for various surface equatorial rotation velocities for
uniform rotation in Fig. 7.3. Note that the distortion of the surface is quite small
for rotational velocities below approximately 250 km/s, changes only modestly until
critical rotation is approached, at which point the distortion becomes very sensitive
to the velocity. Even at the critical rotation velocity the oblateness is not that extreme,
which led to the claim that the observed oblateness of Achernar could not be matched
with uniformly rotating models. Note that the observed oblateness depends on the
inclination, and the observed value of v sin(i) of 275 km/s for Achernar implies that
the inclination should not be that large if it is truly near critical rotation. The limited
oblateness for uniform rotation arises because the interior parts of the star where the
mass is located never rotate very rapidly and thus do not modify the gravitational
potential. Critical rotation occurs before significant interior rotation occurs.

The effect of this specific differential rotation law is to change the relationship
between the surface equatorial velocity and the oblateness. This is shown in Fig. 7.4,
where it is clear the oblateness, and indeed the surface shape, changes appreciably
with the extent of the differential rotation. One feature that should be noticed for
the highest value of β for Veq = 240 km/s is that the distance of the surface from
the equatorial plane decreases with decreasing distance from the rotation axis near
the pole. This means that the incident radiation field at these locations will not be
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Fig. 7.3 Shape of the
surface for uniformly
rotating stellar models. The
rotational velocities are 0,
50, 90, 150, 210, 270, 330,
390, 450, 510, and 570 km/s,
and the critical rotation
velocity is about 600 km/s.
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Fig. 7.4 Effects of the
differential parameter β on
the surface for stellar models
with surface equatorial
velocity of 120 km/s (solid)
and 240 km/s (dashed).
Values of β for
Veq = 120 km/s are 0, 0.2,
0.6, 1, 1.4, and 1.8. Values of
β for Veq = 240 km/s range
from 0 to 2.0 in steps of 0.2.
Increasing the rate of
differential rotation inside
the star makes the surface
more oblate.
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azimuthally symmetric about the normal to the surface here because light will be
impinging from the direction toward the polar axis that will not be matched by light
from the other directions. Thus, we cannot count on being able to use our 1D model
atmosphere models for the SED integration for this case.

7.3.2 SEDs

I wish to utilize the rotating stellar structure models and the plane parallel model
atmospheres as input into terms of (7.1) to obtain information about the basic prop-
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Fig. 7.5 The SED of a
12 M� ZAMS model
uniformly rotating at
500 km/s when observed
pole on (left) and equator on
(right). The curve on the
right has been offset in
wavelength by 5000 Å
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erties of the star. The emergent flux as a function of wavelength can be integrated
over the wavelength to produce the luminosity divided by the surface area of a sphere
of radius d. Because I imposed a value of d in (7.1), I can obtain the luminosity in
a straightforward manner. Of course the result is not actually the luminosity, but
what I would think the luminosity to be if I assumed the flux I observe arose from
a spherically symmetric star. Because the observed flux depends on the inclination,
this deduced luminosity may be decided different from the luminosity emitted by the
actual model. The possible difference will be larger for more rapidly rotating models.
I show in Fig. 7.5 how extreme this can get by comparing the SED one would observe
when seen pole on with the SED seen equator on for the 10 M� ZAMS model rotating
at 500 km/s. I have offset the two SEDs by 5000 Å to enable the visualization. The
SEDs appear mostly filled because the stellar lines are so horizontally compressed.
The most significant difference is the amplitude, although there are less obvious dif-
ferences in the shape of the two curves. The difference between the two luminosities
I would deduce based on my different orientations with respect to the rotation axis
clearly indicates that I must obtain a reasonable estimate for the inclination if I am to
be able to translate an observed magnitude into the amount of energy being emitted
from the surface of the star per second.

The shape of the SED can be used to provide an estimate of the effective tem-
perature. Because the shape of the curve also varies with inclination, the effective
temperature I deduce will also depend on the inclination. Gillich [39] examined a
number of wavelength bands which provided reasonable determinations of the effec-
tive temperature when applied to the collection of plane parallel model atmospheres.
He settled on four, two in the ultraviolet and two in the visible. Four were needed
because the atmospheres depend just enough on the gravity that the gravity variation
must be considered to get a reasonable deduced effective temperature for the plane
parallel models.
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Fig. 7.6 Luminosity and
effective temperature an
observer would deduce as a
function of inclination for
several uniformly rotating
12 M� models. Higher
values of L and Teff on a
given curve correspond to
being observed progressively
closer to pole on. Results are
presented for surface
equatorial velocities of 255
(diamonds), 310 (pluses),
405 (squares), 500
(asterisks), and 575 (circles)
km/s.
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I show the results of this determination of deduced luminosity and effective tem-
perature in Fig. 7.6 for some 12 M� ZAMS models. I have also included the ZAMS
locations for 11 and 13 M� nonrotating models for reference. Data are presented for
inclinations in 10◦ increments in the inclination between 0◦ and 90◦ I will define
these curves as the inclination curves. The deduced luminosity and effective temper-
ature I would find for a given model will be a point on the inclination curve, with
the precise location given by the inclination. The highest effective temperatures and
luminosities correspond to observations seen pole on. From this figure one can see
that the total variation in deduced luminosity for a model rotating at about 300 km/s is
equivalent to that between 11 and 13 M�, something like 0.5 bolometric magnitudes.
For the most rapidly rotating member of this sequence, the pole to equator variation
in the deduced effective temperature is about 6100 K and in the luminosity is about
2.1 bolometric magnitudes. These general trends have been found by a number of
authors (e.g., Linnell and Hubeny [40]; Frémat et al. [41]; Reiners [42]; Townsend
et al. [43]) for many years using varying degrees of approximations related to the
rotating model, the model atmospheres, or both.

The general trend in Fig. 7.6 is to move the curves to the right as the rotation rate
is increased. The deduced effective temperature at the pole does not vary much with
rotation rate until very close to critical rotation, while the deduced effective temper-
ature seen equator on changes far more markedly. This is reflective of the change in
the behavior of the effective temperature as a function of latitude as the rotation rate
increases. As the rotation rate increases, the polar temperature does increase, but the
equatorial temperature drops more dramatically. Gillich et al. [44] have shown that
increasing the differential parameter β has the same effect as increasing the rotation
rate as a whole: generally the inclination curves get longer and move to the right as
β increases.
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Fig. 7.7 Comparison of the
effective temperature of
uniformly rotating model as
a function of colatitude
(solid) with the deduced
effective temperature as a
function of inclination
(dash).
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I compare the latitudinal variation of the effective temperature in the rotating
model with the deduced effective temperature as a function of inclination in Fig. 7.7.
The deduced effective temperature variation is less than the actual variation on the
model, which is reasonable given that the deduced effective temperature is based on
a composite SED which is produced from a weighted integral of the light emitted
for a range of effective temperatures.

7.3.3 Line Profiles

Spectral lines have the potential to supply much information about rotating stars, but
like most other features of rapidly rotating stars, the information must be decomposed
into its relevant parts. For example, line profiles contain information about elemental
abundances, surface conditions, possible differential rotation, and inclination, but it
is only useful when we can separate each of these from the others. From a modeling
perspective, the process of computing a spectral line is the same as computing a SED:
using (7.1) including the appropriate Doppler shift at each location on the surface.
Thus, the observed spectral line profile will be a weighted integral of the Doppler
shifted line intensity taken over the various conditions on the visible surface. At some
level I assume that the shape of the line profile is dominated by the rotation rate, the
rotation law, and the inclination, while the equivalent width is more indicative of the
elemental abundances (as well as the atomic parameters for the line). This may get
blurred if there is significant temperature variation from the pole to the equator and
sufficient line sensitivity to the temperature and effective gravity.

One problem may be identified immediately by examining a line profile as a
function of the surface equatorial velocity, as I show in Fig. 7.8. In this and subsequent
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Fig. 7.8 Line profiles for
12 M� ZAMS models
rotating at Veq = 50
(deepest line core), 100, 210,
350, and 500 km/s
(shallowest line core).
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line profiles, all wavelengths are measured in a vacuum, not in air. This figure shows
the change in the line profile (seen equator on) as a function of the surface equatorial
velocity for a He I line with an O II line nearby. The rotation rate does not have to
be too high before the two lines overlap. A further increase in rotation flattens the
profile so much that determining the location of the continuum becomes difficult, and
a small error in determining the location of the continuum can lead to a substantial
error in the deduced equivalent width of the line. The blending of the lines because of
the large Doppler shifts associated with the rapid rotation can also lead to significant
errors in the equivalent width.

I show the dependence of the line profile on the differential rotation parameter
β in (7.2) (Fig. 7.9). In common with previous work (e.g., Stoeckley [45]; Reiners
and Schmitt [46]), this figure shows that increasing the rotation rate toward the pole
broadens the wing of the line and decreases the depth of the core. The reason becomes
clear in Fig. 7.10, a plot of the surface rotational velocity as a function of colatitude
for selected values of β. As β increases, the rotational velocity at every point on
the surface increases. The exception is the equator because the surface equatorial
velocity is set to the same value there for all models. This increase in the surface
rotation velocity with β means the Doppler shift is larger, and there is less of the
surface contributing small Doppler shift absorption to the line profile. The observed
line profile depends on the inclination as well as the rotation law, and it is not clear
that these two can be disentangled in any obvious way (e.g., discussion in Reiners and
Schmitt [46]). Spectro-interferometry appears to offer such a separation, as indicated
by Domiciano de Souza et al. [47], but it can only applied to bright stars in the infrared.
One final point I wish to make is that the effects of differential rotation, or at least
my particular expression of it, appear to be most pronounced at mid latitudes. This
can be seen by comparing the dependence of the line profile on β in Fig. 7.11 with
that in Fig. 7.9.
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Fig. 7.9 Three line profiles
for a He I line observed
equator on. The values of β
indicate the degree of
differential rotation.
Differential rotation
according to (7.2) broadens
the wings of the line and
makes the line core more
shallow.
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Fig. 7.10 Values of the
surface rotational velocity as
a function of colatitude. The
lower curve is for uniform
rotation, the middle curve for
a value of the differential
rotation parameter β = 1,
and the upper curve for
β = 2. The surface
equatorial velocity in all
three cases is 120 km/s.
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A question that needs some examination is whether the information derived from
the SED as a whole, such as the effective temperature and luminosity, are consistent
with information derived from lines. I have investigated this for a very rapidly rotat-
ing model by comparing the equivalent widths computed at various inclinations with
those from the PHOENIX plane parallel atmospheres to determine an effective tem-
perature for the line as a function of inclination. Doppler effects have been omitted
so that I could compute reliable equivalent widths, but theoretically the equivalent
width is independent of rotational broadening (e.g., Gray [48]). I have performed this
calculation for several lines: He I 4471, He II 4686, C II 4267, N II 4631, O II 4642,
Mg II 4481, Al II 1855, and Si II 4130. I compare the deduced effective temperatures
at the pole and equator for each of these lines with the values deduced from the SED
in Fig. 7.12. Interestingly, the two helium lines indicate temperatures consistent with
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Fig. 7.11 Line profile for a He I line for a model rotating with a surface equatorial velocity of
120 km/s for values of the differential rotation parameter β of 0, 1 and 2 for the deepest, middle,
and shallowest line cores, respectively. The inclination between the rotation axis and the observer is
40◦. The core of the line becomes more shallow and the wings broader as β increases. For extremely
high values of β it is possible to get an apparent core reversal because so much absorption is being
transferred from the line core to the wings.

the broadband information, while the metal lines do not. The temperature variation
of the metal lines when observed pole on appear to be closer to each other than when
observed equator on. While this rapid rotation rate is an extreme case, and probably
unrealistic because of the uncertainty the Doppler broadening would create in the
equivalent widths, it does suggest that we must be careful in thinking about what the
effective temperature and other properties we deduce from rotating stars mean.

7.3.4 Pulsation Frequencies

One property that does not depend on the inclination is the pulsation frequency of
any given mode, although mode identification might be made more difficult because
knowledge of the radius is much more uncertain for moderately and rapidly rotating
stars. However, rotation does affect the pulsation frequencies because it changes
the internal structure of the star. There are a number of approaches to computing
pulsation frequencies for rotating stars, but most of them require the rotation to be
small. One approach that does not has been developed by Clement [24], in which
he numerically integrates the appropriate pulsation equations along several radial
lines from the stellar center and stellar surface to some specific interior location.
The oscillation frequencies of nonrotating stars can be written in terms of a single
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Fig. 7.12 Effective temperatures predicted for various lines (see text) by comparison with equivalent
widths with nonrotating plane parallel model atmospheres for a rapidly rotating star seen pole on
(top curve) and equator on (bottom curve). The upper dashed curve is the effective temperature
deduced from the shape of the SED when seen pole on; the lower curve when seen equator on. We
note that the two helium lines used tend to give the same temperature as the SEDs, while the metal
lines typically do not.

spherical harmonic, but rotation brings in more spherical harmonics into the solution
for any given mode. With the Clement approach, the coefficients of the spherical
harmonics are determined by the results on the different radial lines. The code is
adiabatic, but has been updated to include differential rotation by Lovekin et al. [25].

The usual terminology for a mode is to define it in terms of its radial, latitudinal,
and azimuthal quantum numbers (n, 	, and m). With sufficient rotation, 	 is no
longer a valid quantum number, and we need a new way to describe the mode. One
possible way is to use the value of 	, 	0,which is the value of 	 in the nonrotating star
to which the given mode in the rotating star can be traced back. As the rotation rate
gets higher, this becomes more difficult because the number of spherical harmonics
one needs to include becomes larger (and hence the number of modes computed
becomes larger) and the changes in the frequency from one rotation rate to the next
are larger. Here I shall restrict my attention to low order radial (n ≤ 3), low latitudinal
(	0 ≤ 3), axisymmetric (m = 0) p modes. The linear pulsation calculations include
six radial integrations, which corresponds to six spherical harmonics. Lovekin and
Deupree [49] have found this to be satisfactory for 10 M� ZAMS models for rotation
speeds up to about 360 km/s.

The frequencies for all of these modes decrease as the (uniform) rotation rate
increases, with higher radial order modes decreasing more strongly. This can be seen
in Fig. 7.13, a plot of the frequencies for several modes as a function of rotation rate.
The frequencies are given in terms of the frequency for that mode in the nonrotating
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Fig. 7.13 Pulsation
frequencies as functions of
the rotational velocity for
several modes with 	0 = 2.
The frequencies for each
mode are scaled to the
frequency for that mode in
the nonrotating model.
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model. This decrease in frequency with increasing rotation rate is the trend that one
would expect from the period mean density relation, although the pulsation constant
is not constant as a function of rotation if one computes the mean density as the mass
divided by the volume of the star. One might also expect higher order radial modes to
be more affected than lower order ones because they sample the outer layers, where
the effects of rotation are largest, more than lower radial order modes. The trends
are such that the large separation, given by ν	,n+1 − ν	,n, decreases and the small
separation, given by ν	,n − ν	+2,n−1, increases with increasing rotation. When the
rotation reaches about 300 km/s, both separations are about the same magnitude.

The effects of differential rotation on the pulsation frequencies are shown in
Fig. 7.14 a plot of the frequency in terms of the frequency of the uniformly rotating
model versus the differential rotation parameter β. The changes in frequency are
small, although the change may either increase or decrease the frequency depending
on the value of 	0.The large separation is very modestly changed, whereas increasing
β mimics a slight increase in the rotation rate for the small separation. From these
results I conclude that it should be possible to deduce from a sufficient number of
frequencies something about how much rotation there is, but it would be considerably
more difficult to obtain information about how the angular momentum is distributed
inside the star.

We might also note that the coupling of several spherical harmonics into the
eigenfunction may make photometric mode identification (e.g., Stamford and Watson
[50]; Watson [51]; Cugier et al. [52]; Heynderickx et al. [53]) more difficult for rapidly
rotating stars.

7.4 Final Comments

I have presented a number of techniques which, when used together, might allow
us to interpret observations of rapidly rotating stars to the extent that information
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Fig. 7.14 Effects of the
differential rotation
parameter β on the pulsation
frequency for several 	0
modes. The surface
equatorial velocity in all
cases is 120 km/s. All
frequencies for a given mode
are scaled to the frequency of
the uniformly rotating model
for that mode. The changes
are always small with
variations of β and may be
either positive or negative.
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about the effects of rotation on the stellar structure might be deduced and possibly
about the distribution of angular momentum inside the star. At the moment it is hard
to say that any possible solutions for the type of information routinely available are
even unique. Presumably more experience will determine what may and may not be
possible.
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tion. Many of the calculations were performed on computational facilities provided
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Chapter 8
Seismic Diagnostics for Rotating Massive Main
Sequence Stars

Mariejo Goupil

Abstract Effects of stellar rotation on adiabatic oscillation frequencies of β Cephei
star are discussed. Methods to evaluate them are briefly described and some of the
main results for four specific stars are presented.

8.1 Introduction

Main sequence (MS) massive stars are usually fast rotators and their fast rotation
affects their internal structure as well as their evolution. The issue which is addressed
here is what information can we obtain—about rotation—from the oscillations of
these massive, main sequence stars?

The following seismic diagnostics for rotation using non axisymmetric modes will
be discussed: (1) rotational splittings as direct probes of the rotation profile. More
precisely, we study the effects of cubic order in the rotation rate compared to effects
of a latitudinal dependence of the rotation on the splittings; (2) splitting asymmetries
as a probe for centrifugal distortion. The case of (3) axisymmetric modes as indirect
probes of rotation throughout effect of rotationally induced mixing on the structure
will also be considered.

Results discussed here are obtained with perturbation methods. For nonperturba-
tive methods and results, we refer the reader to Lignières et al. [1], Reese et al. [2]
and references therein.

The paper is organized as follows: in Sect. 8.2, properties of pulsating B stars are
recalled with emphasis on the uncertainties of their physical description that can be
addressed by seismic analyses. Sect. 8.3 recalls the theoretical framework for seismic
analyses of relevance here. In Sect. 8.4, seismic analyses of four β Cep are presented.
In Sect. 8.5 a theoretical study compares the modifications of the rotation splittings
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due either to latitudinal dependence of the rotation rate,�, or to cubic order (O(�3))
frequency corrections. Some conclusions are given in Sect. 8.6.

8.2 Massive Main Sequence Stars

O-B stars are characterized by a convective core and an envelope which is essen-
tially radiative apart a thin outer region related to the iron opacity bump. Important
uncertainties regarding the structure and future evolution of these stars are:

• The extent of chemical element mixing beyond the central instable layers as defined
by the Schwarzschild criterium

• Transport of angular momentum because the rotation can play a significant role in
chemical element mixing.

Convective core overshoot. In 1D stellar models, the convective core is delimited
by the radius rzc according to the Schwarzschild criterium ∇ad = ∇rad. However
this corresponds to a vanishing buoyancy force: the eddies are then strongly slowed
down but still retain some velocity. Hence due to inertia, eddies move beyond the
Schwarzschild radius till their velocity vanishes that is over a distance dov such that the
effective convective core radius becomes rov = rzc +dov.Despite theoretical investi-
gations [3, 4], the overshooting distance computed in 1D stellar evolutionary models
usually remains a rough prescription i.e. it is assumed that dov = αovmin(rzc, Hp)

with Hp the local pressure scale height and αov is a free parameter. Empirical deter-
minations from observations ([5, 6, 7] and references therein) yield a wide range for
αov, namely [0–0.5] Hp. The adopted value for this free parameter has important
consequences for the evolution of a model with a given mass: with a higher lumi-
nosity, it is older at given central hydrogen content (Xc) on the MS and reaches the
end of the MS with a larger mass core- total mass ratio. On a statistical point of
view, the value of αov affects the thickness of the MS on a HR diagram as well as the
isochrones. core overshoot has therefore an influence on stellar age determination
[8, 9].

Rotationally induced mixing in radiative regions. Departure from thermal equi-
librium generated by the oblateness of a rotating star causes large scale motions, the
meridional circulation. As differential rotation also induces turbulence, competition
of these two processes can result in (rotationally induced) diffusion of chemical ele-
ments (Zahn [10] and subsequent works). The evolution of a given chemical specie
j with concentration c j is governed by a diffusion equation (for a review [11, 12]):

ρ
dc j

dt
= ρċ j + 1

r2

∂

∂r
[r2ρVip] + 1

r2

∂

∂r

[
r2ρDt

∂c j

∂r

]
(8.1)

where the first term represents nuclear transformation and the second term atomic
diffusion with Vj,p the diffusion velocity of particles j with respect to protons and
where the turbulent diffusion coefficient Dt = Deff + Dv, Deff comes from the
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meridional circulation and Dv from the turbulence. As Deff depends on the vertical
meridional velocity Ur , chemical and angular momentum evolutions must be solved
together. Hence one also solves an (diffusion-advection) evolution equation for the
angular momentum:

ρ
dr2�

dt
= 1

5r2

∂

∂r
[r4ρ�Ur ] + 1

r4

∂

∂r
[r4ρνv

∂�

∂r
] (8.2)

where νv is the vertical turbulent viscosity related to rotational instabilities.
The current picture is that the vigor of the meridional circulation is controlled by

the magnitude of the surface losses of angular momentum. Hence for hot, high mass
stars which lose mass but much less angular momentum, one expects no efficient
angular momentum internal transport. The rotation profile then essentially results
from expansion and contraction within the star during its evolution: i.e. high ratio of
core rotation over surface rotation. This is well reproduced by rotationally induced
mixing of type I [13]. On the other hand, for cool stars with extended convective
outer layers, dynamo generates an efficient magnetic driven wind which is efficient
to drive important angular momentum losses and internal transport. This mechanism
however is not sufficient enough in the solar case to make the observed rigid rotation
in the radiative solar interior and one must calls for to other mechanisms (waves,
magnetic field) (see [14, 15] for reviews). This shows that many open questions
related to stellar internal rotation and its gradients subsist. An important issue then is
to locate regions of uniform rotation and regions of differential rotation (depth and/or
latitude dependence) inside the star (�core/�surf). Another problem which must be
solved is to disentangle effects of overshooting and rotation on mixed central regions
and extension of convective cores. Indeed the rotationally induced chemical mixing
affects the evolution of the star, its internal structure and oscillation frequencies as
does core overshoot although in a different way [13, 16–19]). Figure 8.1 illustrates the
respective effects of element mixing by core overshoot and rotation on the evolution
of a 9 M� main sequence model in a HR diagram.

Seismology of O-B stars can bring some light about these processes. More
specifically, β Cephei stars are good candidates for this purpose [16–18, 20–22].
Indeed, unlike δ Scuti stars, β Cephei stars do not present significant outer convec-
tive layers which makes the mode identification more trustworthy provided the star is
slowly rotating or that its fast rotation is taken into account in the mode identification
process [1, 2, 21, 23].

8.2.1 β Cephei Stars

β Cephei stars are main sequence stars with masses roughly larger than 5–7 M�
(Fig. 8.2). They oscillate with a few low degree, low radial order modes around the
fundamental radial mode i.e. with periods around 3–8 h. The modes are excited by
the kappa mechanism due to the iron bump opacity. These pulsating stars are located
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Fig. 8.1 Evolutionary tracks
for 9 M� models with
neither rotation, nor
overshoot included (dotted
line), with overshoot
included but not rotation
(short dashed line) and with
rotation included but not
overshoot (long dashed and
solid lines) (from [13])

Fig. 8.2 Left HR diagram
and instability strip for β
Cephei stars. Full dots
represent confirmed β
Cephei stars and open dots
candidates. The dashed lines
delimitate the instability strip
for the fundamental radial
mode (adapted from [25])

at the intersection of the main sequence and their instability strip in a HR diagram
(Fig. 8.2). For more details about β Cephei stars, we refer to reviews by Handler
[24], Stankov and Handler [25], Pigulski [26], and Aerts [27].

So far the observed modes have been identified as p1, p2, g1 modes. We recall
that p modes are propagative when ω2 > N 2 and ω2 > S2

l (for more details, see
[28]). The squared Brünt–Väissälä (buoyancy) frequency is defined as
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Fig. 8.3 Propagation
diagram for model A: a 8.5
M� model with
Teff = 22230 K and initial
X = 0.7, Z = 0.019
(no rotation, no overshoot).
The lamb frequency (dashed
line) is plotted for 
 = 1.
Normalized squared
frequencies discussed here
are found in the range
σ 2 =5–15

N 2 = g

r

(
1

�1

d ln p

d ln r
− d ln ρ

d ln r

)
(8.3)

with p, ρ, g respectively the pressure, density and gravity of the stellar medium
and �1 the adiabatic index. The squared lamb frequency is defined as

S2
l = (khcs)

2 = 
(
+ 1)
c2

s

r2 (8.4)

with kh the horizontal wavenumber of the pulsation mode and 
 the degree of
the mode (when its surface distribution is described with a spherical harmonics
Y m

 (θ, φ)). The local sound speed cs is given by:

cs =
(
�1 p

ρ

)1/2

(8.5)

For g-modes, the propagative region is delimitated by ω2 < N 2 and ω2 < S2
l .

For β Cephei stars, mixed modes propagate as g mode in the inner part and as
p mode in the outer part of the star. Depending on the evolutionary stage of the
star, one expects some of the detected modes to be of mixed p and g nature. Modes
with frequencies around that of the fundamental radial one (normalized frequency
σ = ω/�K ∼ 2–3 with �K = (G M/R3)1/2, R the radius and M the mass of
the star) can be mixed modes. This can be seen in Fig. 8.3 which shows a propa-
gation diagram for a typical case, model A, a model with a mass 8.5 M� and an
age = 19.9 Myr, a solar metallicity to hydrogen ratio Z/X = 0.019 with X = 0.7
and log Teff = 4.347 and log L/L� = 3.723 that therefore lies in the middle of the
main sequence and instability strip for these stars.

Rotation of β Cephei stars ranges from slow (rotational velocity v < 50 km/s) to
extremely rapid (v > 250 km/s) (Fig. 8.4). Effects of uniform rotation start to modify
significantly the tracks in a HR diagram beyond v = 100 km/s for these masses [23].
For v = 100 km/s, with a stellar radius R = 4.94 R�, model A is characterized by
�/�K ∼ 0.175 where �K = (G M/R3)1/2 is the break up angular velocity.
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Fig. 8.4 Histogram of
projected rotational
velocities for β Cephei stars
(from [25])

8.3 Theoretical Framework

In this section, we recall the theoretical framework within which seismic observations
of these stars can be interpreted in terms of rotation (for more details, the reader is
referred to Goupil [29] and references therein). For sake of notation, we recall first
the non rotating case.

8.3.1 No Rotation

Adiabatic pulsation studies consider the linearized conservation equations for a com-
pressible, stratified fluid about a static equilibrium stellar model characterized by
P0, ρ0, �1, φ0 respectively pressure, density, adiabatic index, gravitational potential
profiles. The equation for hydrostatic equilibrium is:

∇ p0 = −ρ0∇φ0 (8.6)

Assuming the fluid displacement δr(r, t) of the form δr(r, t) = ξ(r)exp(iω0t),
the linearized momentum equation then is:

L0(ξ)− ρ0ω
2
0ξ = 0 (8.7)

with

L0(ξ) ≡ ∇ p′ + ρ0∇φ′ + ρ′∇φ0

where L0 is a differential operator acting on ξ ; p′, ρ′, φ′ are the Eulerian pertur-
bation for the pressure, density and gravitational potential respectively. One must
add boundary conditions [30] and this gives rise to an eigenvalue problem where
ω0 is the eigenvalue for the nonrotating case and ξ is the eigenfunction for the fluid
displacement. In the following, we will keep the notation: ν inμHz or c/d;ω in rad/s;
σ = ω/(G M/R3)1/2 the normalized frequency. One defines the scalar product:

〈a|b〉 ≡
∫

V

a∗ · b d3r (8.8)
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where ∗ means complex conjugate and where V is the stellar volume. The scalar
product of ξ with (8.7) then yields:

〈ξ |L0(ξ)− ρ0ω
2
0ξ〉 ≡

∫

V

ξ∗ · (L0(ξ)− ρ0ω
2
0ξ)d

3r = 0

The eigenfrequency can be obtained as an integral expression:

ω2
0 = 1

I
〈ξ |L0(ξ)〉 (8.9)

or

ω2
0 = 1

I

∫

V

ξ∗ · (∇ p′ + ρ0∇φ′ + ρ′∇φ0)d3r (8.10)

with

I =
∫

V

(ξ∗ · ξ)ρ0 d3r (8.11)

In absence of rotation, the eigenmode displacement is written in a spherical coor-
dinate system with a single harmonics, Y m


 (θ, φ), with a spherical degree 
, an
azimuthal number m being the number of nodes along the equator

ξ(r) = ξr (r)Y
m

 er + ξh(r)∇hY m


 (8.12)

where the first part is the radial component and the second term the horizontal com-
ponent of the fluid displacement. The horizontal divergence is

∇h = eθ
∂

∂θ
+ eφ

1

sin θ

∂

∂φ

The divergence of the fluid displacement is written as:

∇ · ξ = λY m

 (8.13)

with

λ = 1

r2

dr2ξr

dr
− �

r
ξh (8.14)

and� = 
(
+1). The perturbed density ρ′(r) = ρ′(r)Y m

 is given by the linearized

continuity equation:

ρ′(r) = −∇ · (ρ0ξ) = −dρ0

dr
ξr − ρ0λ (8.15)
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The perturbed gravitational potential φ′(r) = φ′(r)Y m

 is given by the perturbed

Poisson equation:

∇2φ′ = 4πGρ′ (8.16)

The pressure perturbation p′(r) is related to the density perturbation ρ′(r) by the
adiabatic relation [30] where δ means here a Lagrangean variation:

δp

p0
= �1

δp

p0

8.3.2 Including Rotation

In presence of rotation the centrifugal and Coriolis accelerations come into play. The
centrifugal force affects the structure of the star—the star is distorted—and causes
a departure from thermal equilibrium which generates large scale meridional cir-
culation and chemical mixing. Accordingly, the resonant cavities of the modes are
modified. The static equilibrium (averaged over horizontal surfaces) 1D stellar model
is modified and characterized by P0,�(r), ρ0,�(r), �1,�(r), φ0,�(r)with�(r, θ) the
rotation rate. The Coriolis force enters the equation of motion and affects the motion
of waves and frequencies of normal modes. The linearized equation of motion is
modified. As rotation breaks the azimuthal symmetry, it lifts the frequency degener-
acy: without rotation, 2
 + 1 modes with given n, 
,m (m = −
, 
) have the same
frequency ω0 (omitting for shortness the subscripts n, 
). With rotation, the same
2
 + 1 modes have different frequencies ωm and the rotational splitting is defined
as: Sm = (ωm − ω0)/(m). One also uses Sm = ωm − ωm−1 and the generalized
rotational splitting:

Sm = ωm − ω−m

2m
(8.17)

where ωm is the mode frequency. These various definitions are equivalent only at
first perturbation order in the rotation rate �; the first two are used when only a few
components are available.

8.3.3 Rotational Splittings

At first perturbation order in �, only the Coriolis acceleration plays a role. The
linearized equation of motion including the effect of Coriolis acceleration (2�× v)
in a frame of inertia is

L0(ξ)− ρ0(ωm + m�)2ξ + 2ρ0(ωm + m�)�Kξ = 0 (8.18)
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with Kξ = iez × ξ and ξ is the displacement eigenvector in absence of rotation
and ez is the vertical unit vector in cylindrical coordinates. The nonrotating case
is recovered by setting � = 0. One then expands the displacement eigenfunction
as ξ = ξ0 + ξ1 and the eigenfrequency as ωm = ω�=0 + ω1,m where ω�=0, ξ0
correspond to the eigenfrequency and eigenfunction for a nonrotating star and ω1,m,

ξ1 give the first order correction due to Coriolis acceleration. Keeping only terms up
to O(�), one obtains:

L0(ξ1)− ρ0ω
2
�=0ξ1 − 2ρ0ω�=0(ω1,m + m�)ξ0 + 2ρ0ω�=0�Kξ0 = 0 (8.19)

The correction to the eigenfunction ξ1 can be chosen so that 〈ξ0|ξ1〉 = 0. Taking
the scalar product (8.8) of ξ0 with (8.19) and keeping only terms up to O(�) yields:

〈ξ0| [ L0(ξ1)− ρ0ω
2
�=0ξ1 − 2ρ0ω�=0(ω1,m + m�)ξ0 + 2ρ0ω�=0�Kξ0 ]〉 = 0

(8.20)
from which one derives for a mode with given n, 


ω1,m I0 =
∫

V

ξ∗
0 · (�K − m�)ξ0ρ0d3r (8.21)

which is rewritten as:

ω1,m =
R∫

0

π∫

0

Km(r, θ)�(r, θ)dθdr (8.22)

where the analytical expression for the kernels Km is given in Appendix. At first
order O(�), the generalized splitting (8.17) then is given by

Sm = ω1,m − ω1,−m

2m
(8.23)

Assuming a shelllular rotation �(r), the splitting Sm becomes m independent and
one has:

S =
R∫

0

K (r)�(r)dr (8.24)

with the rotational kernel

K (r) = −1

I

(
ξ2

r − 2ξrξh + (�− 1)ξ2
h

)
ρ0r2 (8.25)

and mode inertia (8.11):
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I =
R∫

0

(ξ2
r +�ξ2

h )ρ0r2dr (8.26)

with again� = 
(
+ 1) and R the stellar radius. For a uniform rotation, this further
simplifies to

S = �β; β =
R∫

0

K (r)dr (8.27)

β is assumed to be known from an appropriate stellar model, S is measured and �
is inferred. This will be used in Sect. 8.4 for β Cep stars.

When only a few measured splittings are available, information about the internal
rotation is limited so one assumes for instance a uniform rotation for the convective
core with the angular velocity � = �c (for x = r/R ≤ xc) and a uniform rotation
for the envelope � = �e for x > xc. Both values are the unknowns. Inserting
into (8.24),

S =
1∫

0

K (x)�(x)dx = �cβc +�eβe

with

βc =
xc∫

0

K (x)dx; βe =
∫ 1

xc

K (x)dx

The detection of two triplets 
 = 1 for instance yields�c,�e and�c/�e provided
βc, βe are given by a model close to the observed star. This type of approach was
used to determine whether the star is in rigid rotation or not for a δ Scuti star [31];
for white dwarfs [32, 33] and recently for β Cephei stars (Sect. 8.4) and SdB stars
[34].

8.3.4 Splitting Asymmetries: Distortion

At second order in the rotationrate, the centrifugal acceleration comes into play. This
has several consequences on the oscillation frequencies (for a review [29]). One is
that the split components are no longer equally spaced. It is then convenient to define
Am the splitting asymmetry as

Am = ω0 − 1

2
(ωm + ω−m) (8.28)
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In order to interpret observed asymmetries, let consider a given multiplet of modes
(i.e. with specified n, 
). Its oscillation frequencies, ωm (m = −
, . . . , 
), are com-
puted up to second order O(�2) as:

ωm = ω0,� + mS|m| + �̄2

ω0,�
(X1 + m2 X2) (8.29)

where ω0,� is the eigenfrequency for a static model including the horizontally aver-
aged centrifugal acceleration. The second term is the splitting (8.23) due to Coriolis
effect and �̄ is an averaged rotation rate. The last term is the asymmetry due to the
non spherical part of the centrifugal distortion which dominates for high radial order
modes. Expressions for X1, X2 can be found in Goupil [29], Saio [35], Dziembowski
and Goode [36], Soufi et al. [37], and Suarez et al. [38]. For low radial modes such
as those excited in β Cep stars, the second order Coriolis contributions to X1, X2
remain significant. According to (8.29), the asymmetry is then given by:

Am =
(
�̄2

ω0,�

)
m2 X2 (8.30)

Let consider again the linearized equation of motion including now the centrifugal
acceleration:

L0,�(ξ)− ρ0,�ω̂
2ξ + 2ρ0,�ω̂�K (ξ)+ L2(ξ)− ρ2ω̂

2ξ = 0 (8.31)

where ω̂ = ωm + m�. The spherical part of the centrifugal acceleration is included
in the spherical 1D model, therefore the linear operator depends on the rotation
rate i.e.

L0,�(ξ) ≡ ∇ p′ + ρ0,�∇φ′ + ρ′∇φ0,� (8.32)

and for the non spherical distortion

L2(ξ) = ρ′
(
ρ2

ρ0,�
∇ p0,� − ∇ p2

)
+ ρ2∇φ′ + ρ0,�esr sin θ∇�2 · ξ (8.33)

where es = sin θer + cos θeθ in a spherical coordinate system (er , eθ , eφ). The
subscript 2 indicates departure from sphericity p2, ρ2, φ2 for the pressure, density
and graviational potential respectively. Again using the scalar product (8.8), one
writes

〈ξ0|L0,�(ξ)−ρ0,�ω̂
2ξ + 2ρ0,�ω̂�K (ξ)〉 + 〈ξ |(L2(ξ)− ρ2ω̂

2ξ)〉 = 0 (8.34)

One then assumes an eigenfunction of the form ξ = ξ0 + ξ1 + ξ2 and the
eigenfrequency as ωm = ω0,� + ω1m + ω2 where the unknown now is ω2. Solving
(8.34) for ω2m leads to an integral expression for X1, X2 and therefore an expression
for Am of the form:
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Am = m2

1∫

0

�2(x)K2(x)dx (8.35)

where K2(x) include effects of distortion of the structure throughout p2, ρ2 and
depend on the eigenfunction ξ . Detailed expression for K ( j)

2 (x) can be found in
Goupil [29], Dziembowski and Goode [36], Soufi et al. [37], Suarez et al. [38], and
Karami [39]. An example for K2(x) is shown in Fig. 8.7 and discussed in Sect. 8.4.2.

Splitting asymmetries can provide probes of the internal structure which differ
from those derived with the splittings Sm as the corresponding kernels are different.
When only a few observed asymmetries are available, one can proceed as for the
splittings (Sect. 8.3 above). Assuming a rotation profile of the simplified form:

�2(x) = �2
c for xc < x

�2(x) = �2
c + 2(x − xc)�

′�c + (x − xc)
2�

′2 for xc ≤ x ≤ xe

�2(x) = �2
e for xe < x

(8.36)

with

�′ = �e −�c

xe − xc
(8.37)

then

Am = m2
(
�2

cβ2,0 + 2�′�cβ2,1 + β2,2�
′2 + β2,e�

2
e

)
(8.38)

where �c,�
′ are assumed known from the splittings (Sect. 8.3.3) and

β2,q =
xe∫

xc

(x − xc)
q K2(x)dx (8.39)

β2,e =
1∫

xe

K2(x)dx (8.40)

Determination of the β2 coefficients then brings some information on the kernels
K2(x)with the promising prospect of deriving constrains on the rotationally distorted
part of the stellar structure.
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8.3.5 Axisymmetric Modes: Rotationally Induced Mixing

Centrifugal departure from spherical symmetry has important effects on all modes
including the axisymmetric modes. Indeed the values of the m = 0 mode frequencies
are shifted when compared to those of non rotating models. Hence the differences

δω = ω0 − ω(� = 0) =
(
�̄2

ω0,�

)
m2 X1 (8.41)

from (8.29) between frequencies of a given mode from a model including rotation
and a non rotating model can be an efficient diagnostic for rotation effects although
some care must be taken when defining the � = 0 stellar model for comparison.
This has been extensively discussed in past publications ([28, 35, 36, 40, 41], for a
review, see [29]).

Another (indirect) effect of the star oblateness on frequencies, as already men-
tioned in Sect. 8.2, is due to the departure from radiative equilibrium which generates
large scale motions (meridional circulation), differential rotation and consequently
shear turbulence. All this concurs to affect the rotation profile. It also causes mix-
ing of chemical elements which affects the prior evolution of the observed star and
therefore its structure. These structure changes must be computed by coupling both
evolutions of the angular momentum and the chemicals, as already mentioned in
Sect. 8.2. These equilibrium structure modifications affect all modes as compared
to those of a nonrotating star, including the axisymmetric modes. The effect on the
frequencies can be quite significant as was discussed by Goupil and Talon [16] and
quantified by Montalban et al. [17], Miglio et al. [18], and Goupil and Talon [42]
(see Sect. 8.4.3).

We consider here only the effect of the structure modifications due to rotationally
induced mixing on the axisymmetric mode frequencies. The Coriolis or the centrifu-
gal accelerations then are not included in the linearized equation of motion. Hence the
linearized equation of motion including rotationally induced mixing yields the usual
integral expression for the eigenfrequency of a nonrotating model, (8.10), except for
the structure quantities such as the density, the pressure, the gravity (ρ, p, g resp.)
etc. which are modified by the rotationally induced mixing. As they now depend on
the rotation rate, we write them as ρ�, p�, g� . . . The linearized equation of motion
including rotationally induced mixing in a 1D spherically symmetric stellar model
then is given by:

ω2
0,� = 1

I�

∫

V

ξ∗
� · (∇ p′ + ρ�∇φ′ + ρ′∇φ�)d3r (8.42)

with the mode inertia:

I� =
∫

V

(ξ∗
� · ξ�)ρ�d3r
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From now on for sake of shortness,we omit the subscript� for the eigenfunctions.
We define the dimensionless variables according to Dziembowski [43] (see also [30]):

y1 = ξr

r
; y2 = 1

g�r

(
φ′ + p′

ρ�

)
; y3 = 1

g�r
φ′ (8.43)

Starting with (8.42), integrations over surface angles and a few integrations by part
for the radial part yield:

ω2
0,� = 1

I�

∫

R

(
−λ(y1 + y2)− d ln ρ�

d ln r
y1(y1 + y3)

)
g�ρ�r3dr (8.44)

where we have assumed that the surface integrals vanish. From its definition (8.14),

λ = Vg,�(y1 − y2 + y3)

with

Vg,� = − 1

�1,�

d ln p�
d ln r

Note that there are several alternative equivalent expressions for ω2
0,�.

Differences between the structure of a model including rotationally induced mix-
ing and that of a model which does not result in differences in the eigenfrequencies
which we note δω = ω0,� −ω0,�=0.We will see in Sect. 8.4.3 that the structures of
the models indicate that p� and its derivative with respect to the radius, the gravity
g�, the density ρ� are not significantly modified compared to the derivative of the
density with respect to the radius. Accordingly using (8.44) and keeping only the
first order terms, one obtains:

δω ≈ − 1

2ω�=0 I�=0

×
∫

R

δ

(
d ln ρ�
d ln r

)
y1(y1 + y3)g�=0ρ�=0r3dr (8.45)

where we have also assumed that the perturbations of the eigenfunctions y j,�−y j,�=0
( j = 1, 3) are negligible at first order. For massive main sequence stars the largest
difference δ(d ln ρ�/d ln r) arises near the convective core (Sect. 8.4.3). Largest
frequency differences therefore are expected for mixed modes compared to p-modes.
Note that the same interpretation can be obtained with differences in the Brünt–
Väissälä approximation, one has from (8.3)

δ

(
r N 2

g

)
= −δ

(
d ln ρ�
d ln r

)
(8.46)
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Fig. 8.5 Left Schematic representation of the frequency spectrum of HD129929 (data from [44]).
Right Rotational kernels for the excited p1 and g1 modes of HD129929 in function of the radius
r/R normalized to the stellar radius (from [45]).

For high frequency (i.e. pure) p-mode which propagate significantly above the
∇μ region, the difference δ (d ln ρ�/d ln r) is essentially negative. In addition
|y3| � |y1| so that we obtain

δω ≈ − 1

2ω�=0 I�=0

×
∫

R

δ

(
d ln ρ�
d ln r

)
y2

1 g�=0ρ�=0r3dr > 0

(8.47)

which is small and positive. For mixed modes having high amplitude in the ∇μ
region, δ (d ln ρ�/d ln r) can be positive and the frequency difference can be large
and negative as illustrated in Sect. 8.4.3. The difference δω is quantified and discussed
in the case of a β Cephei model in Sect. 8.4.3.

8.4 Seismic Analyses of Four β Cephei Stars

We discuss four β Cephei stars which have been the subject of seismic analyses and
for which information about rotation and core overshoot has been inferred: V836 Cen
(HD 129929); ν Eridani, θ Ophiuchi and 12 Lacertae (see also [19]). Schematic rep-
resentations of the frequency spectra for the first three stars are displayed in Figs. 8.5
and 8.6. These four stars are relatively slow rotators (with surface rotational veloci-
ties smaller than ≈70 km/s). Determination of the luminosity, effective temperature
and location in the HR diagram for these slow rotators are not significantly affected
by rotation.
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Fig. 8.6 Schematic representation of the power spectrum of left θ Ophiuchi (data from [46]) and
right ν Eri (data from [67])

8.4.1 Rotational Splittings

HD129929 is a main sequence ∼9 M� star for which one 
 = 1, p1 triplet has been
detected and identified as well as one radial mode and 2 successive components of the

 = 2, g1 mode as represented in Fig. 8.5 [44, 45]. From the triplet and assuming a
solid body rotation, one uses S = �β (8.54) as explained in Sect. 8.3. With β known
from an appropriate stellar model, the measured splitting for the 
 = 1, p = 1 triplet
S gives vrot = 3.61 km/s but from the two successive components of the 
 = 2
multiplet, one obtains vrot = 4.21 km/s, clearly indicating a nonuniform rotation
[45]. Assuming therefore a uniform rotation for the convective core with angular
velocity � = �c and a uniform rotation � = �e for the envelope of the star, the
splittings then obey S = �cβc +�eβe where β j are the integral for the core or the
envelope (Sect. 8.3). It is found that |βc| � |βe| that is actually the detected modes
do not efficiently probe the convective core. This can be seen with the associated
rotational kernels in Fig. 8.5 which have no amplitude in the core. Therefore �c

is taken as the rotation rate of the radiative region in the μ-gradient region above
the convective core (with μ the mean molecular weight). Assuming a linear depth
variation of the angular velocity in the envelope �(x) = �0 + (x − x0)�1, the
splittings must obey S = �0β0 +�1β1 where again β0 and β1 are known from the
stellar model;

β0 =
xc∫

0

K (x)dx; βe =
xe∫

xc

K (x)(x − xc)dx

The knowledge of S1 and S2 then yields �0 and �1. A rotation gradient in the
envelope with �c/�e = 3.6 is obtained.
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In addition, the seismic modelling of the detected axisymmetric modes favors a
core overshooting distance of ∼0.1 pressure scale height (Hp) rather than 0 while
an overshoot of 0.2Hp is rejected.
θ Ophiuchi is also a main sequence ∼9 M� star with an effective temperature

Teff ∼ 22900 K. Three multisite campains seismic observations and data analyses
reveal seven identified frequencies: the radial fundamental 
 = 0 (p1); one triplet

 = 1 (p1) and 3 components (m = −1, 1, 2) of a quintuplet 
 = 2 (g1) [46]. A
seismic analysis led Briquet et al. [47] to conclude that the case of θ Ophiuchi is
similar to HD129929. The detected modes do not provide strong constraint about
the rotation of the convective core. On the other hand, unlike HD129929, the data
for θ Ophiuchi are compatible with a uniform or a quite slowly varying rotation of
the envelope. The convective core overshoot distance is found to be (0.44±0.07)Hp

This is a much larger amount than found for HD129929. Whether this difference
must be related to the fact that θ Ophiuchi seems to rotate more than 10 times faster
than HD129929 remains an open issue.
ν Eri is a very interesting case as it oscillates with three triplets


 = 1 (g1, p1, p2), one radial mode p1 and one 
 = 2 component. Seismic stud-
ies show that the detected modes are able to probe the rotation of the core, which
is rotating faster than the envelope [49–51]. Dziembowski and Pamyatnykh [50]
further assumed a linear gradient as a transition (in the μ-gradient zone) between
the uniform fast rotation � = �c of the core and the uniform slow rotation of the
envelope � = �e above the μ-gradient region. They find a ratio�c/�e = 5.3–5.8.
Model fitting based on the 3 axisymmetric 
 = 1 modes yield an extension of the
mixed central region of 0.1–0.28 Hp above the convective core radius depending on
the adopted chemical mixture and metallicity value [50, 51].

12 Lac Several frequencies have been detected for this star [52] but only four
of the detected frequencies correspond to identified (
,m) modes [53]. Only two
successive components of one 
 = 1 triplet are known which is not enough to
provide information on the inner/surface rotation ratio. One can use as an additional
information the equatorial surface value, veq = 49 ± 3 km/s as derived by Desmet
et al. [53]. One needs the stellar radius which is derived from a seismic modelling
of the star. The resulting seismic model and its radius depend on the radial orders
identified for the modes [50, 53]. Second order (centrifugal) effects on the frequencies
must also be taken into account as the rotation for 12 Lac seems to be fast enough as
recognized by Dziembowski and Pamyatnykh [50]. Taking then a value for the stellar
radius in the broad range R = 7–9R�, the equatorial surface value, veq = 49±3 km/s
and the observed splitting of 1.3032μHz yields a ratio �inner/�surf in the range
[1.8–5] definitely indicating a non rigid rotation. There is not yet an agreement
concerning the radial order of the identified modes but the triplet seems in any case
to be of mixed nature and therefore able to probe the core rotation. Dziembowski
and Pamyatnykh [50] did not consider overshoot and Desmet et al. [53] found that
core overshoot must be smaller than 0.4 Hp.

Summary These studies lead to the conclusion that a few rotationally split modes
can provide important information about internal rotation and core overshoot of β
Cephei stars if the modes are identified, enough precise measurements are obtained
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Table 8.1 Overshoot versus rotation rate for several stars from seismic analysis

β Cep Veq (km/s) αov �inner/�env Z ref

HD129929 ∼ 2 0.1 ± 0.05 �0.2/�surf ∼ 3.1 0.019 ± 0.003 Dupret et al. [45]
θ Ophiuchi 29 ± 7 0.44∗± 0.07 env. unif. rotation 0.012 ± 0.003 Briquet et al. [47]
ν Eri ∼6 0.15 ± 0.05 �c/�env ∼ 5.5–5.8 0.0172 ± 0.0013 Pamyathnyck et al.

[48]
12 Lac ∼49 <0.4 �c/�env∼1.8–5 0.01–0.015 (Dziembowski and

Pamyatnykh
[50], Desmet et
al. [53]

Veq the derived the equatorial velocity, αov the overshoot parameter, �inner/�env the ratio of the
the rotation rate in the inner layers to that of the surface, Z the metallicity. The modellings assume
a Grevesse–Noels mixture except for 12 Lac. aAsplund mixture

and the age of the star is such that excited modes have mixed g, p nature. Trying to
disentangle overshoot and rotation effects on core element mixing is only starting with
a measure of their relative magnitude as is illustrated in Table 8.1. As emphasized by
Dziembowski and Pamyatnykh [50], in that respect, seismic modelling of fast rotators
are needed. Once the size of the mixed core and the ratio of core to surface rotation
are reliably determined, the next issue is to estimate ,what part in the seismically
measured extension of the core, dov, comes from convective eddy overshooting and
what part comes from other transport processes such as those induced by rotation.

8.4.2 Splitting Asymmetries: Distortion

The splitting asymmetry, Am (8.35), for acoustic modes is mainly due to the
oblateness of the star caused by the centrifugal force although for low radial order
modes, the Coriolis contribution is also significant. Figure 8.7 represents the normal-
ized splitting asymmetries:

Rm ≡ Am/ν0,1,0 (8.48)

for the 
 = 1, p1 and g1 modes in function of the scaled frequency y = ν
,n,0/ν0,1,0
where ν0,1,0 is the frequency of the radial fundamental mode. Rm is plotted for
θ Ophiuchi, HD129929 and ν Eri. The same quantities for 8.2 M� stellar models
are also represented. The models have been computed with CESAM2k code [54]
assuming standard physics [42, 55] including a core overshooting distance of 0.1
Hp and an initial hydrogen abundance X = 0.71 and metal abundance Z = 0.014.
The evolution of the selected models is represented by the central hydrogen con-
tent Xc from 0.5 to 0.2. The frequencies have been computed using a second
order perturbation method and an adiabatic oscillation code WAR(saw)M(eudon)
adapted from the Warsaw’s oscillation code [56]. For each model, two sets of fre-
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Fig. 8.7 Left Scaled asymmetries Rm 103 for 
 = 1 n = 1,(top) and n = −1 (bottom) modes in
function of the m = 0 frequency scaled by the radial fundamental mode frequency. The open dot
(resp. full dot, full square) represents the observed asymmetry for θ Oph, (resp. for V386 Cen, ν
Eri). The solid (resp. dashed) line corresponds to v = 30 km/s (resp. 10 km/s) 8.2 M� models. The
central hydrogen content Xc is decreasing toward the right. Top right Kernels K2(x) for splitting
asymmetries of 
 = 1, n = 1 (p1)mode (solid line) and 
 = 1, n = −1 (g1)mode (dashed line) for
model with Xc = 0.35.The abscissae is the normalized radius. Bottom right: Run of the normalized
Brünt–Väissälä profile N 2r/g for the corresponding model with r/R. (from [59])

quencies are computed assuming a uniform rotation corresponding to v = 30 km/s
and v = 10 km/s respectively. These sequences of models do not represent true
evolutionary sequences as in realistic conditions, the rotation changes with time and
can be non uniform. They however illustrate the evolution of the asymmetry when a
mode changes its nature during evolution, from pure p mode to mixed p and g mode
for instance. Indeed pure g modes have small asymmetries compared with pure p
modes because they have much smaller amplitude in the outer envelope where dis-
tortion has its most significant effect. This is illustrated in Fig. 8.7. In a perturbation
description, one finds that Rm is a second order effect proportional to �2 ([29, 36,
57] and references therein). The variation of Rm with the scaled frequency y (i.e.
with stellar evolution) is similar for the v = 30 and v = 10 km/s sequences of models
but Rm is roughly nine times (ie ratio of �2) larger for v = 30 km/s models than
v = 10 km/s models. For pure p modes, the asymmetry amounts to Rm ∼ 0.8×10−3

whereas for pure g modes it almost vanishes.Rm for the 
 = 1, n = 1 mode decreases
for older models (larger y). The reverse happens for the 
 = 1, n = −1 mode. The
reason is that for young models, 
 = 1, n = 1 and n = −1 modes are pure p and g
modes respectively. When the model is more evolved, these two modes experience
an avoided crossing and exchange their nature. From a perturbative approach, one
derives:
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Am = ν
,n,0

1∫

0

�̂2(x)K2(x)dx (8.49)

where �̂2 = �2/(G M/R3) and x = r/R the radius normalized to the surface
radius. K2(x) depends on the centrifugal perturbation part of pressure and density as
well as the differential rotation �(x) and the mode eigenfunction. Figure 8.7 shows
K2(x) in function of the normalized radius x = r/R for 
 = 1, n = 1(p1) and

 = 1, n = −1(g1) modes for the v = 30 km/s, 8.2 M� model with Xc = 0.5. The
inner layers contribute to the asymmetry of 
 = 1, g1 multiplet in contrast with the

 = 1, p1 multiplet for which the kernel K2 is concentrated toward the surface layers.
The asymmetry of the 
 = 1, g1 multiplet is sensitive to the inner maximum of the
Brünt–Väissälä frequency, arising from theμ-gradient, which contributes negatively
to K2.As the negative contribution is very localized, it decreases the asymmetry only
slightly compared to a pure p mode for a uniform rotation. However, one can expect
a larger decrease in case of a rotation faster in the inner regions than the surface.

Theoretical estimates seem to disagree with observed asymmetries deduced from

 = 2 modes for θ Ophiuchi [47] and ν Eridani for 
 = 1, p2 [48, 51, 58]. Is the
disagreement real? The question has some relevance as the asymmetry values are
only marginally above the observation uncertainties. Or can it be that the observed
frequencies do not belong to the same multiplet as suggested by Dziembowski and
Pamyatnykh [50] for ν Eri?

8.4.3 Axisymmetric Modes: Mixing

Rotationally induced mixing of chemical elements changes the structure and in par-
ticular affects the Brünt–Väissälä frequency N at the border of the convective core.
As a consequence, at a given location in a HR diagram corresponding to an observed
star, one can find several models with different structures and therefore likely differ-
ent values of the mode frequencies including axisymmetric modes which can then
be used as diagnostics for mixing.

Uniform and constant diffusion coefficient Dt . Montalban et al. [17] and Miglio
et al. [18] investigated the effect of turbulent mixing on a g-mode frequency spectrum
and the ability of such modes to probe the size of stellar convective cores. They
assumed a constant in time and uniform in space global diffusion coefficient Dt =
Deff + Dv in (8.1). The constant value for Dt is chosen so as to correspond to
the value near the convective core provided by a Geneva stellar model including
rotationally induced mixing. This is valid for g-modes which have most of their
amplitude there (see [18]). The model is a mid main sequence (Xc = 0.3) 10 M� with
Dt = 7104 cm2 /s chosen to correspond to a rotational velocity v = 50 km/s.

Figure 8.8 shows the Brünt–Väissälä frequency (N ) profile for a model with tur-
bulent chemical element mixing and a model with no turbulent chemical element
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Fig. 8.8 Left Brünt–Väissälä profile in the central region of a 10 M� model with Xc = 0.3 and
an initial velocity of 50 km/s. Right the large separation ν
,n,0 − ν
,n−1,0 in function of the radial
order n for 
 = 2 modes for a model including turbulent mixing (solid) line and a model including
a 0.1Hp overshoot instead (dashed line) (from [17])

mixing but including instead core overshoot assuming an overshoot distance of
0.1 Hp. Differences can be seen at the edge of the convective core. The Brünt–
Väissälä frequency of the model with turbulent mixing behaves more smoothly in the
μ-gradient region above the convective core than for the model computed with no
turbulent mixing but with an overshoot distance of 0.1Hp. From Geneva code cal-
culations, the evolution of the rotation profile leads to a core to envelope ratio of
1.6. The differences between the two profiles arising at the edge of the convective
core cause significant changes on frequencies of g-modes and mixed modes. The
frequency separations �n,
 = ν
,n,0 − ν
,n−1,0 differ by a few μHz for radial order
n = −1 and n = −2, 
 = 2 modes between the model with overshoot 0.1Hp and
the model with turbulent mixing (Fig. 8.8). At higher frequencies for pure p-modes,
no differences in �n,
 are seen when adding turbulent mixing or not.

Rotationally Induced Diffusion Coefficient. In this section, we consider stellar
models which are computed with the Toulouse–Geneva evolutionary code which
includes the coupling between rotationally induced mixing and momentum transport
(8.1) and (8.2) as described by Talon [11]. The rotational evolution of the star begins
from solid body when the core is still radiative, shortly after the star leaves the
Hayashi track. A 8.5 M� mass has been chosen so that the models evolve through
the HR diagram to a location where the star θ Ophiuchi is expected (log L/L� =
3.73, Teff = 4.35). This corresponds to a mid main sequence model, V15, with a
central hydrogen content Xc = 0.3. The evolution has been initiated with a uniform
rotational velocity v = 15 km/s on the pms; the rotation profile then evolves to
strongly differential rotation so that V15 has a surface velocity of v = 48.2 km/s and
a ratio �core/�surf = 1.6 when crossing the θ Ophiuchi location in the HR diagram
at an age of 19.65 Myr.
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Fig. 8.9 Run of the
rotationally induced
turbulent coefficient, Dt ,

with the relative shell mass at
three different evolutionary
stages with ages 0.5, 1 and
1.5 Myr respectively and
labelled with their central
hydrogen content
Xc- leading to the stellar
model V15 (Xc = 0.3) (from
[59])

The diffusion coefficient, Dt , depends on the meridional circulation velocity and
the local turbulence strength. It varies with depth and evolves with time as illustrated
in Fig. 8.9. The Dt profile is represented for 3 models with ages 0.5, 1 and 1.5 Myr built
assuming an initial 15 km/s velocity on the pms. The rotation evolving from uniform
to strongly differential rotation causes a relaxation toward a stationary profile which
persists with only an adjustment due to expansion and contraction with evolution
[59].

Effect of rotationally induced mixing on the structure is significant at the edge of
the convective core as emphasized in Fig. 8.9 where we compare the squared Brünt–
Väissälä profile, N 2, in the vicinity of the edge of convective core for model V15
and a model V0 which includes neither rotationally induced mixing Fig. 8.10 nor
overshoot. Inclusion of rotationally induced mixing leads to the model V15 which
shows a narrower maximum of Brünt–Väissälä profile at the edge of the convective
core compared with that of V0.

To illustrate the impact of such a difference on the oscillation frequencies, we
compare low radial order frequencies of the models V15, and V0.Modes p1, p2, g1
for these models have amplitudes near the edge of the convective core. Figure 8.11
shows that this can result in significant frequency differences for the same mode eas-
ily detectable with CoRoT observations. The frequencies of these modes are quite
sensitive to the detail of the Brünt–Väissälä profile in this region. This means that
some care must be taken when computing these frequencies and drawing conclu-
sions. The frequencies of these modes are indeed sensitive not only to the physics
but unfortunately also to the numerics which can be quite inaccurate in this region
of the star.

The sign and magnitude of δω = ωV 15 − ωV 0 are dependent on the mode when
it has amplitude in the regions where the nonrotating model and the model with
rotationally induced mixing differ. We consider here, as in Sect. 8.3.5, only the effect
of rotationally induced mixing on the spherically symmetric structure. Differences
in the structure of the model V15 which includes rotationally induced mixing and
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Fig. 8.10 Model V15 with a
surface rotational velocity
v = 48.2 km/s. Top: Profile of
of the normalized
Brünt–Väissälä frequency as
defined by N 2r/g in
function of the normalized
radius r/R. Bottom: rotation
profile normalized to its
surface value. The core to
surface ratio for the rotation
rate then is 1.6 [60]

the model V0 which does not result in differences in the eigenfrequencies which we
note δω = ω0,� − ω0,�=0.

The structure of the models V15 and V0 indicates that p� and its derivative, the
gravity g�, the density ρ� are not significantly modified compared to the deriva-
tive of the density. Figure 8.11 shows that the largest difference δ(d log ρ�/d log r)
arises near the convective core. Accordingly from (8.47), one expect larger frequency
differences δω for mixed modes compared to p-modes. This is what is observed in
Fig. 8.11. As explained in Sect. 8.3.5, with the help of the integral relation for δω,
the frequency differences for high frequency (i.e. pure) p-mode is small and positive.

For lower frequency mixed modes, δ
(

d ln ρ�
d ln r

)
can be positive and the frequency

difference can be large and negative as illustrated in Fig. 8.11.

8.5 Cubic Order Versus Latitudinal Dependence

It has been known for a long time that latitudinal variations of the rotation rate
generate departures from linear splitting. On the other hand, a fast uniform rotation
can generate cubic order corrections to the frequency of non axisymmetric modes
which also cause departure from linear splitting. The latitudinal correction to the
linear splitting is proportional to the� gradient whereas cubic order effects, as their
name indicate, are proportional to �3. It is expected that the dependence of these
corrections with the frequency differs when it is due to latitudinal differential rotation
or to cubic effects.

Low mass stars are known to be slow rotators. Indeed due to their outer con-
vection zone, they undergo magnetic braking. Due again to their outer convection
zone, observational evidences exist for surface latitudinal differential rotation. Hence
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Fig. 8.11 Left top: Zoom of Brünt–Väissälä frequency profile in the vicinity of the edge of convec-
tive core in function of the normalized radius r/R for model V15 (dashed line) and model V0 (solid
line). The local maximum of N 2r/g corresponds to a nonzeroμ-gradient. It decreases more sharply
in presence of rotationally induced mixing because mixing results in smoothing theμ-gradient. Left
bottom: Differences δν = δω/(2π) between frequencies computed from model V0 (no rotationally
induced mixing included) and model V15 for 
 = 0 (solid line) and 
 = 1 (dashed line) m = 0
modes in μHz (from Goupil and Talon [28]). Right d ln ρ/d ln r in function of the normalized
radius r for model V15 (dashed line) and model V0 (solid line), right top: from center to surface,
right bottom: in the central region [60]

for these stars, the averaged rotation rate � is small and �� = �equa − �pole,

the difference between the rotation rates at the equator and the poles, can be large
(25–30% for the Sun, between 1% and 45% for a star like Procyon, Bonanno et al.
[61]). One therefore expects that latitudinal corrections to the splittings dominate
over cubic order ones which are negligible. On the other hand, more massive stars
on the main sequence have shallower convection zones which even disappear above
∼3–5 M�. These stars usually are fast rotators with a radiative envelope which may
or may not be in latitudinal differential rotation. For these fast rotators, one can won-
der what is the minimal latitudinal shear which dominates over cubic order effects
and can therefore be detectable. Here we quantify this issue with the help of a poly-
tropic model with index 3. The constants characterizing the polytrope are taken to
correspond to model A considered in Sect. 9. We establish first the splitting correc-
tion due to latitudinal differential rotation. This is then compared with the splitting
correction arising from cubic order effects as derived by previous works. We assume
a rotation velocity of 100 km/s.

http://dx.doi.org/10.1007/978-3-642-19928-8_9
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8.5.1 Latitudinal Dependence

Hansen et al. [62] derived the expression for the rotational splitting of adiabatic non-
radial oscillations for slow differential (steady, axially symmetric) rotation �(r, θ)
and applied it to numerical models of white dwarfs and of massive main sequence
stars assuming a cylindrically symmetric rotation law. In the solar case, the effects
of latitudinal differential rotation on theoretical frequencies were investigated by
Dziembowski and Goode [36], Gough and Thompson [41]; Dziembowski and Goode
[63] who also considered the case of δ Scuti stars.

In order to be able to compute the splittings from (8.17) and (8.22), one must
specify a rotation law. It is convenient to assume a rotation of the type:

�(r, θ) =
smax∑
s=0

�2s(r)(cos θ)2s (8.50)

where θ is the colatitude and we take smax = 2. The surface rotation at the equator is
�(r = R, θ = π/2) = �0(r = R). Note that in the solar case, �2, �4 are negative
and the equator rotates faster than the poles [63, 64]. As shown in Appendix, inserting
(8.50) into (8.22) yields the following expression for the generalized splitting ((8.86)
in Appendix):

Sm =
R∫

0

�0(r)K (r)dr +
s=2∑
s=0

m2s Hs(�) (8.51)

with K (r) defined in (8.25) and

Hs(�) = −1

I

R∫

0

�0(r)
[

Rs

(
ξ2

r − 2ξrξh + ξ2
h ((�− 1))+ Qsξ

2
h

)]
ρ0r2dr

(8.52)

where Rs and Qs depend on �2,�4 and � = 
(
+ 1) and are given by (8.84) and
(8.86) (Appendix) respectively.

(a) Uniform rotation. In that case, �(r, θ) = �0,∀r, θ ; �2,�4 = 0 i.e. R j ,

Q j = 0 for j = 0, 2 hence Hm, j = 0. One recovers the well known expression:

Sm = �0β (8.53)

where, for later purpose, we have defined

β =
R∫

0

K (r)dr = −1

I

R∫

0

[ ξ2
r − 2ξrξh + (�− 1)ξ2

h ] ρ0r2dr (8.54)
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This is usually rewritten as:

Sm = �0(CL − 1)

where CL is the [65] constant

CL = 1

I

R∫

0

[
2ξrξh + ξ2

h

]
ρ0r2dr

(b) Shellular rotation then�(r, θ) = �0(r) and smax = 0; again here:�2,�4 = 0
ie R j = Q j = 0 for j = 0, 2 and

Sm = −1

I

R∫

0

�0(r) [ ξ2
r − 2ξrξh +�ξ2

h ] ρ0r2dr (8.55)

(c) Latitudinally differential rotation only. In that case, �2 j , j = 0, 2 are depth
independent and Rs and Qs are constant and

Sm = �0β +�0

s=2∑
s=0

m2s(Rs(�)β + Qs(�)γ ) (8.56)

with β defined in (8.54) and

γ = −1

I

R∫

0

ξ2
hρ0r2dr

For a triplet 
 = 1, m = 1 (� = 2) then

S1 = �0β +�0(R(�)β + Q(�)γ ) (8.57)

with (using (8.84) and (8.86)):

R(�) =
s=2∑
s=0

Rs(�) = 1

5

�2

�0
+ 3

7

�4

�0
(8.58)

Q(�) =
s=2∑
s=0

Qs(�) = −24

5

�4

�0
(8.59)

In the solar case, β ∼ −1 and |β| � |γ | for the excited high frequency p-modes.
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S1 ≈ −�0

(
1 + 1

5

�2

�0
+ 3

7

�4

�0

)
(8.60)

With �2/�0 = −0.127,�4/�0 = −0.159, one obtains a departure from linear
splitting of |S1/�0+1| = 0.093 i.e. a ≈10% change in the solar case. For upper main
sequence stars, excited modes are around the fundamental radial mode and may be
mixed modes with |β| ∼ |γ | ∼ 1/2. This leads for instance to |S1/�0 + 1/2| ≈ 5%
for �2/�0 and �4/�0 equal to 1/5 of the solar values.

8.5.2 Latitudinal Dependence Versus Cubic Order Effects

Let assume on one side a pulsating star uniformly rotating with a rate �0 high
enough that cubic order (O(�3

0)) contributions are significant. On the other side, one
also considers a model rotating with a latitudinally differential rotation (uniform in
radius). One issue then is which one of these two effects dominate over the other one
since the cubic one is O(�3) whereas the other one is O(��)?

For stars other than the Sun, one can simply assume the rotational latitudinal shear
�� = �2 with �4 = 0 and �(θ) = �0 +�� cos2 θ.

For 
 = 1 modes, (8.57) becomes

S1(lat) = �0β

(
1 + 1

5

��

�0

)
(8.61)

Expressions for the frequency correction (in rad/s) for cubic order effects assuming
a uniform rotation has been derived by Soufi et al. [37]. Part of the cubic order effect
is included in the eigenfrequency ω0,� and therefore is also included in second order
coefficients which indeed involve ω0,�. Another part of the cubic order effects is
included as an additive correction to the frequency.

Frequency up to 3rd order were computed for models of δ Scuti stars by Goupil
et al. [66], Goupil and Talon [16], Pamyatnykh [67], Goupil et al. [68] and Karami
[39] rederived the cubic order effects following Soufi et al.’s [38] approach and
Karami [39, 69] applied it to a ZAMS model of a 12 M� β Cephei star. He found
that cubic order effects are of the order of 0.01% for a l = 2, n = 2 and 0.5% for
a n = 14 mode for a 100 km/s rotational velocity. Values of the third order additive
correction to the frequency were listed for 
 = 1 p-modes of a polytrope of index 3
by Goupil [29].

Here we write the splitting under the form:

Sm(cubic) = �0β +�0

(
�̂0

σ0

)2

T|m| (8.62)

where the last term represents the full cubic order contribution with σ0 is the nor-
malized frequency of the nonrotating polytrope and �̂0 = �0/�K .
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Table 8.2 Coefficients assuming a uniform rotation for a polytrope with polytropic index 3 and
adiabatic index γ = 5/3


 = 1
n σ 2

0 CL0 X1 X2 Y1 Y2 T1/σ
2
0 -β -γ

−7 0.22 0.479 0.417 0.008 0.012 −0.018 0.592 0.521 0.456
−6 0.28 0.476 0.419 0.005 0.015 −0.023 0.462 0.524 0.450
−5 0.37 0.473 0.422 0.001 0.020 −0.029 0.351 0.527 0.441
−4 0.52 0.469 0.425 −0.004 0.026 −0.039 0.254 0.531 0.431
−3 0.78 0.466 0.427 −0.013 0.038 −0.056 0.164 0.534 0.410
−2 1.28 0.466 0.428 −0.024 0.059 −0.089 0.073 0.535 0.386
−1 2.51 0.473 0.422 −0.035 0.106 −0.159 −0.025 0.528 0.269
1 11.37 0.029 0.777 0.877 2.890 −4.335 0.024 0.970 0.025
2 21.49 0.034 0.773 0.864 5.802 −8.703 −0.034 0.966 0.028
3 34.83 0.033 0.773 0.851 9.624 −14.436 −0.063 0.966 0.027
4 51.39 0.031 0.776 0.840 14.340 −21.511 −0.077 0.969 0.026
5 71.15 0.027 0.778 0.832 19.940 −29.909 −0.084 0.973 0.025
6 94.09 0.024 0.781 0.826 26.414 −39.621 −0.088 0.976 0.023
7 120.19 0.021 0.783 0.821 33.757 −50.635 −0.089 0.979 0.022
8 149.43 0.019 0.785 0.817 41.964 −62.946 −0.089 0.981 0.020
9 181.81 0.017 0.787 0.814 51.032 −76.548 −0.089 0.984 0.019
10 217.32 0.015 0.788 0.811 60.958 −91.437 −0.089 0.985 0.018
11 255.94 0.013 0.789 0.809 71.739 −107.609 −0.088 0.987 0.017
12 297.67 0.012 0.790 0.807 83.375 −125.062 −0.087 0.988 0.017
13 342.51 0.011 0.791 0.805 95.862 −143.793 −0.087 0.989 0.016
14 390.44 0.010 0.792 0.804 109.201 −163.802 −0.086 0.990 0.015
15 441.47 0.009 0.793 0.803 123.392 −185.087 −0.085 0.991 0.014
16 495.59 0.008 0.793 0.802 138.432 −207.648 −0.085 0.992 0.014
17 552.80 0.008 0.794 0.801 154.323 −231.484 −0.084 0.993 0.013
18 613.09 0.007 0.794 0.800 171.064 −256.595 −0.084 0.993 0.013
19 676.47 0.006 0.795 0.799 188.655 −282.982 −0.083 0.994 0.012
20 742.93 0.006 0.795 0.798 207.097 −310.645 −0.083 0.994 0.012
21 812.46 0.006 0.796 0.798 226.389 −339.584 −0.082 0.995 0.012
22 885.08 0.005 0.796 0.797 246.534 −369.800 −0.082 0.995 0.011
23 960.78 0.005 0.796 0.797 267.530 −401.295 −0.082 0.995 0.011

The squared frequency σ 2
0 is the dimensionless squared frequency ω2/(G M/R3). Spherical cen-

trifugal distortion of the polytrope has not been included

Table. 8.2 lists the value of the dimensionless coefficients T1/σ
2
0 and −β,−γ for


 = 1 modes for a polytrope with a polytropic index 3.
The coefficient T1/σ

2
0 remains nearly constant with increasing frequency for fre-

quencies above σ0 > 10 i.e. for p modes For σ0 > 10 (p-modes), −β ≈ 1 and
T1/σ

2
0 ≈ −0.09.The splitting is decreased by a latitudinal dependence with�� < 0

whereas it is increased by cubic order effects T1/β > 0. In absolute values, the effect
of latitudinal differential rotation on the splittings then dominates over cubic order
effects whenever:
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∣∣∣∣���0

∣∣∣∣ > 0.45 �̂2
0

For model A and a rotational velocity 100 km/s, �̂0 = 0.174 then |��
�0

| > 1.36%
For a faster rotator with for instance 200 km/s, the latitudinal shear must be larger
i.e. |��

�0
| > 5.45%.

For the slowly rotating β Cep stars considered in Sect. 8.4 above (v < 50 km/s),
cubic order effects in the splittings can be neglected in front of latitudinal effects
equal or larger than 0.34%. At this low level, both effects are comparable to the
observational uncertainties (0.1%).

8.6 Conclusions

We have seen along this review that several efficient seismic tools can be designed to
obtain valuable information on the internal structure and dynamics of main sequence
massive stars which oscillate with a few identified modes. Identification of the
detected modes requires a high signal to noise which is made available due to the
large amplitudes of these opacity-driven modes. On the other hand, these stars oscil-
late with low frequencies lying near/in the dense part of the spectrum where p modes,
mixed modes and g modes can be encountered. While this is a great advantage in
order to probe the inner layers of the star, resolution and precise measurement of
quite close frequencies in a Fourier spectrum requires very long time series. This
explains the yet still small number of β Cephei stars for which a successful seismic
analysis has been obtained, despite the appealing prospects that a better knowledge
of their structure bring up valuable constrains on their still poorly understood life end
as supernovae. It is expected that the space experiments CoRoT (Michel et al. 1995)
and Kepler [70] will increase the number of O-B stars for which fruitful seismic
analyses can be carried out as well as possibly enlarge the sample to fast rotators.
Mode identification can be at first difficult to perform for fast rotators but some of
these fast rotating stars might also show oscillations of solar-like type which charac-
teristics could help the mode identification. This interesting perspective has recently
emerged with the discovery of the first chimera star with the CoRoT mission [71].

8.7 Appendix: Differential Rotation

The expression for the mode splitting of adiabatic nonradial oscillations due to a
differential rotation �(r, θ) can be put into the compact form [29, 36, 62, 63, 72],
[73, 74]:
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δωm = m

R∫

0

π∫

0

Km(r, θ)�(r, θ)dθdr (8.63)

where Km is called rotational kernel:

Km(r, θ) = − ρ0r2

I

sin θ

2
�(r, θ)

×
∫

dφ

2π

((
|ξr |2 − (ξ∗

r ξh + cc)
)

|Y m

 |2 + |ξh |2

(
∇H Y m∗


 · ∇H Y m

 − ∂|Y m


 |2
∂θ

cos θ

sin θ

))

(8.64)
where the spherical harmonics Y m


 are normalized such that

∫
(Y m′

 )

∗(θ, φ)Y m

 (θ, φ)

d�

4π
= δ
,
′δm,m′

where d� = sin θdθdφ is the solid angle elemental variation and δ
,
′ is the Kroe-
necker symbol. Mode inertia I is given by

I =
R∫

0

(
|ξr |2 +�|ξh |2

)
ρ0r2dr (8.65)

with � = 
(
+ 1).
It is convenient to assume a rotation of the type:

�(r, θ) =
smax∑
s=0

�2s(r)(cos θ)2s (8.66)

where θ is the colatitude. (8.63) becomes:

δωm = − m

I

smax∑
s=0

R∫

0

�2s(r)

×
[(|ξr |2 − (ξ∗

r ξh + cc)
)Ss + |ξh |2(B1 + B2)

]
ρ0r2dr

(8.67)

where we have defined

Ss ≡
∫

|Y m

 |2(cos θ)2s d�

4π
=

1∫

0

μ2s |Y m

 (θ, φ)|2dμ (8.68)

with μ = cos θ and

B1 =
∫ (∇H Y m∗


 · ∇H Y m



)
(cos θ)2s d�

4π
(8.69)
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B2 = −
∫ (

∂|Y m

 |2
∂θ

cos θ

sin θ

)
(cos θ)2s d�

4π
(8.70)

The term in |ξh |2 requires a little care. Consider first B1. Integration by part
leads to

B1 = −
∫

d�

4π
Y m∗



× [(∇2
H Y m


 )(cos θ)2s + (∇H Y m

 ) · ∇H ((cos θ)2s)] (8.71)

Recalling that ∇2
H Y m


 = −�Y m

 , one gets

B1 = �Ss − 1

2

∫ [
Y m∗



∂Y m



∂θ

d(cos θ)2s)

dθ
+ cc

]
d�

4π
(8.72)

where cc means complex conjugate. Again an integration by part yields

B1 = �Ss + 1

2

∫
|Y m

 |2 d

dθ

[
sin θ

d(cos θ)2s)

dθ

]
dθ

2
(8.73)

One finally obtains

B1 = �Ss + s
[
(2s − 1)Ss−1 − (2s + 1)Ss

]
(8.74)

Turning to the second term B2 in (8.68), an integration by part yields

B2 = −(2s + 1)Ss (8.75)

Inserting expressions (8.74) and (8.75) into (8.68), one obtains

δωm = m
smax∑
s=0

R∫

0

�2s(r)Km,s(r)dr (8.76)

with

Km,s(r) = K (r)Ss − 1

I
ρ0r2|ξh |2s

[
(2s − 1)Ss−1 − (2s + 3)Ss

]
(8.77)

and

K (r) = −1

I

[
|ξr |2 − (ξ∗

r ξh + cc)+ |ξh |2(�− 1)
]
ρ0r2 (8.78)
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Expression (8.77) is equivalent to (8.25) in [36]. For any s, Ss is given by a recurrent
relation (8.31) in Dziembowski and Goode [36]). Note that δωm = δω−m . Let define
the generalized splitting

Sm = ωm − ω−m

2m
= δωm − δω−m

2m
= δωm

m

We limit the expression for the rotation to smax = 2 i.e.:

�(r, θ) = �0(r)+�2(r) cos2 θ +�4(r) cos4 θ (8.79)

then for adiabatic oscillations (ξr (r) and ξh(r) are real):

Km,0(r) =K (r)

Km,1(r) =K (r)S1 − 1

I
ξ2

h [1 − 5S1] ρ0r2

Km,2(r) =K (r)S2 − 1

I
ξ2

h 2 [3S1 − 7S2] ρ0r2

(8.80)

where we have used S−1 = 0;S0 = 1.
We obtain a formulation for the generalized splittings with a m dependence

of the form:

Sm =
R∫

0

(�0 +�2S1 +�4S2) K (r)dr

− 1

I

R∫

0

(�2(1 − 5S1)+�42(3S1 − 7S2)) ξ
2
hρ0r2dr

(8.81)

One needs S1 and S2 (computed from (8.31) in [35]):

S1 = 1

4�− 3
(−2m2 + 2�− 1) = 2�− 1

4�− 3
− m2 2

4�− 3

S2 = 1

4�− 15

3

2

[
S1(−2m2 + 2�− 9)+ 1

]

The first term in brackets in (8.81) becomes

(�0 +�2S1 +�4S2) = �0(1 + R0 + m2 R1 + m4 R2) (8.82)

where

R0 =�2

�0

2�− 1

4�− 3
+ 3

�4

�0

[
(2�2 − 8�+ 3)

]
(4�− 15)(4�− 3)

R1 = − 2

4�− 3

[
�2

�0
+ 3

�4

�0

(2�− 5)

(4�− 15)

]

R2 =�4

�0

6

(4�− 15)(4�− 3)

(8.83)
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For the second term in (8.81), one has:

�2(1 − 5S1)+�42(3S1 − 7S2 = �0(Q0 + m2 Q2 + m4 Q2) (8.84)

where

Q0 = 2

4�− 3

[
�2

�0
(1 − 3�)− 6

�4

�0

(3�2 − 11�+ 3)

4�− 15

]

Q1 = 10

4�− 3

[
�2

�0
+ 12

�4

�0

(�− 2)

(4�− 15)

]

Q2 = − 4

(4�− 3)

21

(4�− 15)

�4

�0

(8.85)

Collecting terms from (8.82) and (8.84), the generalized splitting (8.81) takes the
expression:

Sm =
R∫

0

�0(r)K (r)dr +
s=2∑
s=0

m2s Hs(�) (8.86)

with

Hs(�) =
R∫

0

�0(r)

[
Rs K (r)− Qs

1

I
ξ2

h

]
ρ0r2dr (8.87)

For a depth independent rotation law, �(θ), �2 j , j = 0, 2 are depth independent
and Rs and Qs are constant. then for a triplet 
 = 1 (� = 2):

S1 = �0β +�0

(
s=2∑
s=0

Rs(�)

)
β +

(
s=2∑
s=0

Qs(�)

)
γ (8.88)

with

s=2∑
s=0

Rs = 1

5

�2

�0
+ 3

7

�4

�0
(8.89)

s=2∑
s=0

Qs = −24

5

�4

�0
(8.90)

and

β =
R∫

0

K (r)dr (8.91)

γ = −1

I

R∫

0

ξ2
hρ0r2dr (8.92)
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Chapter 9
Asymptotic Theory of Stellar Oscillations
Based on Ray Dynamics

F. Lignières

Abstract This chapter is concerned with the extension of the asymptotic theory
of stellar oscillations beyond the case of a non-rotating, non-magnetic spherically
symmetric star. It is shown that ray models that describe propagating waves in the
short-wavelength limit provide a natural framework for this extension. The basic tools
to construct an asymptotic theory from a ray model and some general results obtained
in the context of quantum physics are first described. Then, a recent application to
the high-frequency acoustic modes of rapidly rotating stars is presented.

9.1 Introduction

The asymptotic theory of stellar oscillations has played a major role in the develop-
ment of helio and asteroseismology. By providing analytical formulas for the modes
and the frequencies [1–5], the theory allows a deep understanding of the oscillation
properties that, in turn, enables to construct identification and inversion tools for
seismology [4, 6]. Although the theory is asymptotic (that is formally valid in the
limit of modes of vanishing wavelength) and assumes linear adiabatic oscillations,
it proved sufficiently accurate to describe observed modes like the high frequency
p-modes of the Sun and the low frequency g-modes in white dwarfs.

The asymptotic theory of stellar oscillations has been however restricted to sit-
uations where the eigenvalue problem is fully separable. For a non-magnetic non-
rotating spherically symmetric star, the modes are indeed separable in the three
spherical coordinates. Spherical harmonics form the angular part of the mode while
its radial part verifies a one-dimensional boundary value problem. The asymptotic
theory then consists in applying a short-wavelength approximation to the radial eigen-
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value problem to obtain an analytical solution for the radial part of the mode and
the eigenfrequencies (see the references above for the details). Such a simplifica-
tion is however not possible in many cases of practical interest for stellar seismol-
ogy. The rapid rotation of most upper-main-sequence pulsating stars (δ Scuti stars,
γ Doradus stars, Be stars, pulsating B stars) destroys the mode separability due both
to the centrifugal flattening of the star [7] and to the angular coupling induced by
the Coriolis force [8]. Strong magnetic fields also prevent mode separability like in
roAp stars [9]. An asymptotic theory for these stars would be of great importance to
interpret their frequency spectra, notably as high quality data are acquired by spatial
missions (MOST, CoRoT, Kepler).

In this lecture, I shall be concerned by the extension of the asymptotic theory
of stellar oscillations to non-separable situations. Such a theory has been recently
proposed for acoustic modes in rapidly rotating stars and has been successfully con-
fronted with numerical computed high frequency p-modes of uniformly rotating
polytropic stars [10]. I will thus mainly consider acoustic stellar waves in the follow-
ing although many aspects of the construction of the asymptotic theory are general
and should be also relevant for other stellar waves. In particular I will show that ray
models of stellar waves provide a natural framework to extend the asymptotic the-
ory of stellar oscillations to non-separable problems. Much as optical rays describe
short-wavelength traveling electromagnetic waves in the geometrical optics limit, it
is indeed possible to construct a ray model that describes traveling stellar waves in
a short-wavelength asymptotic limit. But as we are interested in modes, that is in
standing waves, the central issue for an asymptotic theory based on a ray model is
to construct modes from positively interfering traveling waves. This is not an easy
task in the general case. Fortunately, as commented in the next paragraph, this ray
model route has already been taken in quantum physics to describe short-wavelength
quantum waves and we can benefit from the results obtained in this field. Another
objective of this lecture is to present cases where the asymptotic organization of the
oscillation frequency spectrum is significantly more complex than in non-rotating,
non magnetic, spherically symmetric stars. For example, the frequency spectrum of
high-frequency acoustic modes in rapidly rotating stars can be described as a super-
position of independent frequency subsets that are either regular (with different type
of frequency patterns) or irregular but with generic statistical properties.

In quantum physics, the ray model of the quantum waves corresponds to the
classical limit of the quantum system. Since Bohr’s model of the Hydrogen atom,
numerous efforts have been made to relate the classical and the quantum proper-
ties of quantum systems and in particular to compute the eigenstates and the energy
levels from the classical trajectories. This is exactly the same issue as constructing
stellar oscillation modes from the ray model of stellar waves. Early works in quan-
tum physics have concentrated on the case where the Hamiltonian that describes the
classical dynamics is integrable. In this case, a general procedure has been found that
enables to construct the eigenstates and the energy levels from the classical dynam-
ics. This procedure is known as the EBK semiclassical quantization after the name
of its main contributors Einstein, Brillouin and Keller [11–13]. More recently, in the
last 30 years, the issue of relating the properties of the quantum system to those of



9 Asymptotic Theory of Stellar Oscillations Based on Ray Dynamics 261

its classical limit has been considered in the wider context of non-integrable Hamil-
tonian dynamics. In particular, a basic issue has been to determine how the chaotic
dynamics of a classical system manifests itself in the properties of the eigenstates
and energy levels of the associated quantum system. This field of research has been
called quantum chaos and it produced a number of important results which have since
been applied to other wave phenomena, such as those observed in e.g. microwave
resonators [14], lasing cavities [15], quartz blocks [16], and underwater waves [17].

Is it possible to use quantum chaos theory to construct an asymptotic theory of
stellar oscillations from a ray model? Since quantum chaos results are based on the
Hamiltonian character of the classical dynamics, they are in principle applicable to
any wave problem whose ray model is governed by Hamiltonian dynamics. As we
shall see in the following, this is indeed the case for many type of waves as long as
the dissipative effects can be neglected and the boundary conditions do not destroy
the Hamiltonian character of their ray dynamics.

The document is organized as follows. In Sect. 9.2, wave equations occurring in
quantum physics, optics and acoustic stellar oscillations are written down to empha-
size their similarities. The ray models of these three types of waves together with
their Hamiltonian formulations are derived in a unified way. Some results of quan-
tum chaos studies are presented in Sect. 9.3. In particular, features of the energy level
spectra that are sensitive to the integrable or chaotic nature of the classical dynamics
are described. In Sect. 9.4, a recent asymptotic analysis of acoustic modes in rapidly
rotating stars based on acoustic ray dynamics is briefly presented.

9.2 Wave Equations and Ray Models

In this section, I first emphasize the similarities between three wave equations re-
spectively governing the quantum eigenstates of a single particle in a potential, the
monochromatic electromagnetic waves in a linear, isotropic, transparent medium
and the adiabatic high-frequency acoustic waves in stars. This allows to describe in
a unified way the short-wavelength approximation of these wave equations which
then leads to the eikonal equation and the ray model. The Hamiltonian formulation
of the equations governing the rays is then explicited.

In quantum physics, the eigenstates of a single non-relativistic particle in a
potential V are solutions of the time-independent Schrödinger equation:

�� + 2m

�2 [E − V (x)]� = 0 (9.1)

where the wavefunction associated with the particle is ψ(x, t) = �(x)e(−i Et/�),
�(x) is the eigenstate, E is the energy, m is the mass and � is the reduced Planck
constant.

In optics, monochromatic electromagnetic waves in a linear, isotropic, transparent
medium of refractive index n verify:
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�Ê +
[ω

c
n(x)

]2
Ê = 0 (9.2)

where Ê(x) is the complex amplitude of the electric field E = �{Êe(−iωt)}, ω is the
wave pulsation and c is the speed of light.

The wave equation that governs monochromatic high-frequency adiabatic linear
acoustic waves in uniformly rotating stars can be written in the following form:

��̂ + ω2 − ω2
c

c2
s

�̂ = 0 (9.3)

where �̂ is complex amplitude of the full wave solution � = �{�̂e(−iωt)}, ω is the
pulsation, cs is the sound speed andωc(x, ω) is the cut-off frequency which provokes
the wave reflection at the star surface. The high-frequency hypothesis enables to
neglect the gravity waves, the effect of the Coriolis force and the perturbation of
the gravitational potential. Furthermore, while non-adiabatic effects are known to
be important near the surface of stars, the adiabaticity hypothesis is generally good
enough to compute accurate oscillation frequencies.

Note that different forms of (9.3) have been proposed in the literature, the expres-
sion of ωc and the relation between � and physical quantities such as the pressure
perturbation or the Lagrangian displacement ξ depend on the choice of the depen-
dent variable and on the assumptions made. For example, if the variation of the
background gravity is neglected in the perturbation equation (see [18] p. 493), (9.3)
is obtained with� = ρ

1/2
0 c2

s ∇ · ξ and ωc = cs
2Hρ

(1 − 2n0 · ∇Hρ)1/2 where ρ0 is the
background density, ξ is the Lagrangian displacement, Hρ is the background density
scaleheight and n0 a unit vector opposite to the gravity direction. If this approxima-
tion is not made, the expressions of ωc and � are more complex and ωc generally
depends on ω ([18], p. 439). It can also be shown that in centrifugally distorted stars
high-frequency adiabatic acoustic waves are also governed by an equation of the
form (9.3), the expressions of ωc and � being given in [10].

The three wave equations (9.1–9.3), have a similar form:

�� + K 2(x)� = 0 (9.4)

K (x) being equal to
√

2m(E − V )/� in the quantum case, ωn/c in the optical case
and

√
ω2 − ω2

c/cs in the acoustic case. The solutions of the eigenvalue problem will
thus only depend on the specific form of K 2(x) and on the boundary conditions.

There is a particular situation where these three problems are identical. It occurs
when K is constant and the domain of propagation is bounded by a closed curve
where a given boundary condition is applied on �. The two-dimensional version
of this problem is called a quantum billiard because in the short wavelength limit
the rays are straight lines and the reflections on the boundary are specular. Quantum
billiards play an important role in quantum chaos theory (an example is shown in the
next section). In quantum physics, this corresponds to the idealized situation where
the potential V vanishes inside the domain and goes to infinity outside the domain,
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K being equal to
√

2m E/�. In optics, a quantum billiard is obtained with linearly
polarized electromagnetic waves propagating in an homogeneous two-dimensional
cavity bounded by a perfectly conducting medium, K is then equal to ωn/c. For
acoustic waves, the sound speed has to be uniform inside the domain (K = ω/cs)
and the surface has to behave as a reflecting wall. This is not, however, a realistic
model for the stellar acoustic waves since we know that cs is strongly inhomogeneous
in stars.

The short-wavelength approximation (also known as WKB, WKBJ, or JWKB
approximation) of the wave equation (9.4) consists in looking for wave-like solutions
of the form � = A(x) exp[i
(x)] under the assumption that their wavelength is
much shorter than the typical lengthscale of variation of the background medium.
The amplitude term A(x) is assumed to vary on the background lengthscale L while
the oscillating term exp[i
(x)] varies much more rapidly. This suggests to expand
the solution as


 = �(
0 + 1

�

1 · · · ) and A = A0 + 1

�
A1 · · · (9.5)

where 1/� is the ratio between the wavelength of the solution and the background
lengthscale. When this expansion is introduced into (9.4), the dominant O(�2) term
yields the so-called eikonal equation:

K (x)2 = �2(∇
0)
2. (9.6)

This implies that K (x)must be of the order of�which, according to the expressions
of K , indicates that the small wavelength limit corresponds to high-energy levels
for the quantum system and to high frequencies for the optical and acoustic sys-
tems. In the eikonal equation describing stellar acoustic waves, the ωc term must be
retained since its increase near the star surface is responsible for the back-reflection
of the waves and thus eventually for the formation of the modes through constructive
interferences. The next order of the expansion (9.5) enables to relate A0 to 
0.

The eikonal equation can be viewed as a local dispersion relation. Indeed, a
local wavevector k can be defined from the spatial phase term 
(x) by the relation
k = ∇
 (recall that, in an homogeneous medium, the spatial phase would be
(x) =
k0 · x with k0 a uniform wavevector) so that the eikonal equation reads:

D(k, ω, x) = K 2 − k2 = 0. (9.7)

Instead of trying to solve directly the eikonal equation as a PDE (Partial Differ-
ential Equation) verified by the function 
(x), the ray model consists in searching
solutions for the phase along a given path x(s). To find these solutions, one has to
solve the coupled differential equations that determine the ray path and the evolution
of k(s) along it (and then integrate k = ∇
 along the ray).

We now demonstrate that, for a general eikonal equation D(k, ω, x) = 0, these
coupled equations can be written in a Hamiltonian form. Let’s consider a general
coordinate system [x1, x2, x3] and compute the partial derivative of D with respect
to each coordinate xi :
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∂D

∂xi
+

N=3∑
j=1

∂D

∂k j

∂k j

∂xi
= 0 i = 1, . . . , 3 (9.8)

where k j is defined as k j = ∂

∂x j
. From the definition of k j , we have that

∂k j
∂xi

= ∂2

∂xi ∂x j

= ∂2

∂x j ∂xi

= ∂ki
∂x j
. Thus, (9.8) can be written as:

∂D

∂xi
+

N=3∑
j=1

∂D

∂k j

∂ki

∂x j
= 0 i = 1, . . . , 3 (9.9)

If we consider a path x(s) defined by dxi
ds = ∂D

∂ki
, the derivative of ki following

this path is given by:

dki

ds
=

N=3∑
j=1

∂ki

∂x j

dx j

ds
=

N=3∑
j=1

∂ki

∂x j

∂D

∂k j
i = 1, . . . , 3 (9.10)

As dki
ds corresponds to the second term on the left hand side of (9.9), the equations

defining the ray model are

dxi

ds
= ∂D

∂ki
i = 1, . . . , 3 (9.11)

dki

ds
= −∂D

∂xi
i = 1, . . . , 3 (9.12)

These are Hamilton’s equations where D is the Hamiltonian and xi and ki are the
conjugate variables, xi the position variables and ki the momentum variables (see [19]
p. 317 for a similar demonstration). The above derivation is valid for any coordinate
system [xi ]. The momentum variables ki are the covariant component of the wave
vector k in the natural basis associated with [xi ], the definition of the natural basis
being ei = ∂x/∂xi .

This Hamiltonian formulation can be simplified in two special cases that are
relevant for the there wave equations considered in this section. First, when D can
be written as D(k, ω, x) = H(k, x)− ω, the above equations become:

dxi

ds
= ∂H

∂ki
i = 1, . . . , 3 (9.13)

dki

ds
= −∂H

∂xi
i = 1, . . . , 3 (9.14)

where the ray path now moves at the group velocity ∂H
∂ki
. According to the expres-

sion of K (x) for the three wave equations considered, this formulation holds with
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H = ck/n for the optical rays and H = √
c2

s k2 + ω2
c for stellar acoustic rays.

It is also the case for the quantum system with D = H( p, x) − E where
H = p2/2m + V (x) is the Hamiltonian and p = �k is the momentum vector.

Second, when the Hamiltonian can take the form D = p2/2m+V (x),Hamilton’s
equations reduce to the classical vectorial form:

dx
dt

= p
m

(9.15)

d p
dt

= − ∇V (9.16)

where the second equation is simply the Newton’s second law for the conservative
force associated with the potential V . The classical limit of the quantum system can
obviously be written in this form. It is also possible in the other cases since the eikonal
equations of the electromagnetic and acoustic waves can be written 0 = p2/2m

+ V (x) where m = 1, p = k and the potential V is respectively V = − 1
2

[
ωn
c

]2 in

the optical case and V = − 1
2
ω2−ω2

c
c2

s
in the acoustic case. The total energy D is thus

fixed to zero but the frequency ω acts as a parameter that modifies the potential.
In this section, we have derived the ray models of three similar wave equations

and have shown that they can be described by Hamiltonian dynamics. A direct conse-
quence is that the bulk of knowledge accumulated on Hamiltonian dynamics is avail-
able to characterize the ray properties. For example, as shown in Sect. 9.4, acoustic
rays become more and more chaotic as the rotation of the star increases [10]. The
deep understanding of the transitions from integrability to chaos in Hamiltonian dy-
namics is extremely useful to characterize such an evolution. But what is still more
important in the context of this lecture is that the special properties of the Hamil-
tonian systems can be used to construct an asymptotic theory of stellar oscillation
based on the ray model. This will be considered in the next section.

Before concluding this section, it must be reminded that some effects which
have not been considered in the present analysis would modify the Hamiltonian
character of the ray equations. Dissipative effects produce a concentration of phase
space volume that can not be described by Hamiltonian dynamics. Thus the acoustic
ray model does not take into account non-adiabatic effects in stars. Another non-
Hamiltonian effect can be induced by the presence of a sharp boundary between
two media (like the strong gradients at the upper limit of a core convective zone)
since an incident ray divides into a reflected ray and a transmitted ray. There have
been however attempts to extend the ray dynamics approach to account for the split-
ting of rays at such discontinuities [20]. Finally, in some circumstances, the reflec-
tion of waves at a wall can lead to a focusing or defocusing effect that destroys
the Hamiltonian character of the ray dynamics. This is for example the case for the
reflection of gravity waves if the wall is inclined with respect to the direction of the
gravity [21].
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9.3 Regular Versus Irregular Energy Level Spectra
in Quantum Systems

As acoustic stellar waves of short-wavelength can be described by rays and as the
ray dynamics is Hamiltonian, one wonders whether the oscillation modes formed by
these waves are sensitive to the nature, chaotic or integrable, of the Hamiltonian ray
dynamics. This question has been considered in the context of quantum physics an
overview of the results being available in classical textbooks [22–24]. Here, I shall
focus on the results that concerns the organization of the energy level spectra for
quantum systems that are either classically integrable or completely chaotic. The
situation where the dynamics is mixed in the sense that regular and chaotic motions
coexist in phase space is mentioned in the next section, in the context of acoustic
rays in rapidly rotating stars. We also restrict ourselves to bounded systems where
the energy spectrum is known to be discrete.

9.3.1 Regular Spectrum

Energy level spectra of quantum system whose classical limit is integrable are said
to be regular in the sense that they can be described by a smooth function of N
integers (n1, n2, n3 . . . , nN ), where N is the number of degree of freedom of the
Hamiltonian:

Ei = f (n1, n2, n3, . . .) (9.17)

This remarkable property results from the fact that the phase space of integrable sys-
tems is entirely structured by N -dimensional invariant surfaces (also called invariant
tori because these surfaces have the topology of a N -torus). These surfaces are said
to be invariant because any trajectories starting on the surface remains on the surface
as time goes on.

Let us first come back to the construction of a solution � = A(x) exp[i
(x)]
from a ray solution [x(s), k(s)]. To obtain the spatial phase 
(x), the expression
k = ∇
 is integrated along the ray:


(x) = 
(x0)+
x∫

x0

k(s) · dx(s) (9.18)

If a phase space trajectory crosses its starting position x0 at a later time, the phase
function 
(x) will be multivalued on that position. Thus, the necessary condition
that the function �(x) = A(x) exp[i
(x)] is single-valued on the position space
requires that the variation of 
 between these two phase space points [x0, k0] and
[x0, k1] is a multiple of 2π (provided the phase of A does not change which is true
outside the caustic). More generally, trajectories that crosses a surface 
 = const.
must also verify such a condition.
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To implement this condition of positive interference is not easy in the general case,
notably when the trajectories are chaotic. But, in integrable systems, trajectories stay
on a well-defined structure of phase space and the condition of positive interferences
can be shown to apply to any closed contour C on the torus (and not necessarily to a
contour that follows a phase space trajectory). Furthermore, the fact that the action
integral

∫
C k ·dx is identical for any contours C ′ obtained by continuously deforming

C on the torus (known as the Poincaré–Cartan theorem) reduces the condition to N
independent conditions:

∫

Ci

k · dx = 2π

(
ni + βi

4

)
(9.19)

where Ci are N topologically independent closed paths on the N -dimensional torus.
The integer βi called the Maslov index is introduced to account for a π/2 phase
lag that must be added each time the contour crosses a caustic. Indeed, the caustic
corresponds to the boundary of the torus projection onto position space; the amplitude
A taken in the position space is discontinuous there, leading to the π/2 phase loss
(see [13] for details). Equation 9.19 is the EBK semiclassical quantization condition
mentioned before. In practice, the usual way to apply it is to choose contours Ci

for which the formulas (9.19) are simple to compute. Gough [18] applied the EBK
quantization to acoustic rays in a non-rotating spherically symmetric star and found
that the result is practically identical to the usual asymptotic theory that uses of the
separability of the wave equations.

The existence of the function (9.17) defining the energy level spectrum then fol-
lows from the expression of the Hamiltonian in the action-angle coordinates [I, θ ].
This a particular coordinate system of integrable systems such that the momentum
coordinates I1, I2, I3, . . . are defined by the action integrals (9.19) (divided by 2π )
and are constant of motions. The Hamiltonian is thus a function of the N actions only
(since d Ii/dt = ∂H/∂θi = 0), H(I1, I2, I3 . . .). Consequently, the EBK formulas
(9.19) appears as quantization formulas for the actions, Ii = ni + βi

4 , and the energy
level spectrum is simply determined by Ei = H(I1, I2, I3 . . .) = f (n1, n2, n3, . . .).

An important remark about the EBK quantization is that it essentially requires
the presence of an invariant torus in phase space. Thus, as we shall see in the next
section, it can be also applied to non-integrable systems if invariant tori are present
in phase space.

9.3.2 Irregular Spectrum

When the classical dynamics is chaotic, a smooth function like (9.17) can not be
found and the energy spectrum is said to be irregular. Instead, the spectrum of a
classically chaotic quantum system is best characterized by its statistical properties.

To show this, it is first necessary to define the fluctuations of the density of
energy level, dfluct(E). The total density d(E) is such that the number of energy
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level comprised between Ea and Eb is equal to
∫ Eb

Ea
d(E)dE . This quantity can

then be split into a mean density of level dav(E) and the deviation from the mean
dfluct(E) :

d(E) = dav(E)+ dfluct(E) where dav(E) = 1

2�

E+�∫

E−�
d(E)dE (9.20)

and� is the averaging scale. The interest of this expression is that the mean density
dav(E) does not depend on the chaotic or integrable nature of the dynamics, while
the fluctuations about this mean dfluct(E) do.

The mean density dav(E) depends on the global properties of the system con-
sidered. This has been shown by Weyl [25] who provided an analytical estimate of
dav(E) in the high-energy limit. Accordingly, the mean number of modes whose
energy level is below E, N (E) = ∫ E

−∞ dav(E ′)dE ′, is approximatively equal to the
volume of phase space available (that is the volume of the H < E region) divided
by the mean phase space volume occupied by an individual mode, that is (2π�)N .

The mean density dav(E) is then obtained by derivating this quantity with respect
to E . As an example, for a two-dimensional quantum billiard, the phase space vol-
ume such that H < E is simply

∫
H( p,x)<E d2 pd2x = 2πm E A where A is the area

of the billiard, thus dav(E) = m A/(2π�
2).As expected, the mean level density does

not depend on the nature of dynamics inside the billiard but only on its area (see [10]
for an application of the Weyl’s formula to acoustic stellar oscillations).

A simple way to characterize the fluctuations of the level density dfluct(E) is to
consider the statistical distribution of the spacing between consecutive energy levels
Si = Ei+1 − Ei (the energy levels Ei are labeled in ascending order). The mean
level difference�E (computed over the averaging scale�) is the inverse of the mean
level density dav(E). Thus, to characterize the deviations from the mean, the energy
differences are scaled by �E . Statistical distributions of si = (Ei+1 − Ei )/�E
have been determined for different systems, either experimentally or through the
numerical computations of theoretical problem.

The first experimental evidence of a universal distribution for classically chaotic
systems has been obtained from nuclear energy levels. Fig. 9.1 shows an histogram
of si for 1726 consecutive energy level spacings which has been determined from
the analysis of 27 different nuclei [26]. Also shown on this figure is a distribution
P(s) = πs/2 exp(−πs2/4) called the Wigner’s surmise that fits closely the data.
This distribution corresponds to an heuristic model that was proposed long before
by Wigner. Confronted to the difficulty of defining an Hamiltonian for the nucleus,
Wigner assumed that the statistical properties of nuclear spectra are similar to that of
Hamiltonians taken at random. As the Hamiltonian operator projected on a basis of
eigenstates is represented by infinite matrices, this idea can be pursued by looking
at the eigenvalue spectra of random matrices. Basic requirements on the matrices,
namely that the results should not depend on the choice of the eigenstate basis and that
the matrix elements are independent random variables, enables to specify the matrix
ensemble. For time-reversible problems, this ensemble called GOE for Gaussian
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Fig. 9.1 Statistical distribution of the spacings between consecutive nuclear energy levels, the GOE
distribution and the Poisson distribution. From Bohigas et al. [26]

Orthogonal Ensemble corresponds to real, symmetric matrices where each matrix
element follows a Gaussian distribution, the width of the distribution of off-diagonal
elements being twice that of diagonal elements. The Wigner distribution P(s) =
πs/2 exp(−πs2/4) provides a good approximation to the statistical distribution of
their eigenvalue consecutive spacings. Thus, the experimental evidence shown in
Fig. 9.1 provided the first striking agreement between real data and the prediction of
the random matrix theory.

The level spacing distribution has been also determined for numerically computed
spectra of quantum billiards. Fig. 9.2 presents the result obtained by Bohigas et al.
[27] for a chaotic billiard, namely the Sinai billiard, showing again a good agreement
with the Wigner’s surmise. Since then, similar evidences have been obtained in
quantum systems (from the atomic level of rare-earth atoms) and in other wave
systems whose ray dynamics is chaotic (with dedicated experiments using microwave
resonators [14], or quartz blocks [16]). This led to the conjecture that the distribution
of consecutive level spacing is indeed universal in classically completely chaotic
systems and corresponds to the prediction of the random matrix theory.

Conversely, the spectra of integrable systems are predicted to be uncorrelated, and
in general this leads to fluctuations given by the Poisson distribution P(s) = exp(−s)
if N > 1 [28]. As shown in Figs. 9.1 and 9.2, the prediction is strikingly different
from the chaotic case. In particular, a distinctive property of classical chaotic system
is that P(s) = 0 at s → 0. This level repulsion effect can be interpreted as the
consequence of avoiding crossing effects between coupled modes in non-integrable
systems.
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Fig. 9.2 Statistical distribution of the spacings between consecutive energy levels of the Sinaï
billiard, the GOE distribution and the Poisson distribution. The Sinaï billiard is shown in the insert.
From Bohigas et al. [27]

Other statistical properties of the energy level spectrum, the level clustering and
the spectral rigidity, have been shown to be sensitive to the nature of the dynamics
(see for example [22] for a brief description of these properties).

9.4 Application to the Asymptotic Theory of Acoustic Modes
in Rapidly Rotating Stars

The basic tools to construct an asymptotic theory from a ray model and some general
results obtained in the context of quantum physics have been presented in the previous
sections. They have been used recently to propose an asymptotic theory of the high-
frequency acoustic modes in rapidly rotating stars [10]. In this section, we give a
brief description of this theory with emphasis on the type of predictions that can be
made and on the confrontation of these predictions with the numerically computed
modes.
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Fig. 9.3 PSS at � = 0.59(G M/R3
e )

1/2 and typical acoustic rays associated with the four main
phase space structures: a a two-period island ray (blue/dark grey) and the associated periodic orbit
with endpoints a and b (orange/light grey), b a chaotic ray (red/grey), c a six-period island ray
(magenta/light grey) and d a whispering gallery ray (green/light grey). On the PSS, (colored/grey)
symbols (diamonds for the chaotic and whispering gallery rays, crosses for the two-period and
six-period island rays) specify the points where these trajectories cross the PSS. M denotes the
mass of the star and Re its equatorial radius

The acoustic ray dynamics has been studied in polytropic models of star whose
rotation has been progressively increased. For each rotation rate, the Hamiltonian
equations governing the ray dynamics are integrated numerically for many different
initial conditions. Then, to visualize the structure of the phase space, the standard
method of the Poincaré Surface of Section (PSS) is used. As the system is symmetric
with respect to the rotation axis of the star, the projection of the angular momentum
on this axis Lz = r sin θkφ is a constant of motion, where kφ = k · eφ and eφ is
a unit vector in the azimuthal direction. The number of degree of freedom is then
reduced to N = 2 and the PSS is a two-dimensional surface. The chosen PSS has
been constructed by computing the intersection of the phase space trajectories with
the curve defined by rp(θ) = rs(θ) − d, situated at a small fixed radial distance d
from the stellar surface rs(θ).

The acoustic ray dynamics becomes non-integrable as soon as the rotation is
not zero and undergoes a smooth transition towards chaos as the rotation increases.
Dynamical systems in such a transition are said to be mixed as chaotic trajectories
coexist with stable phase space structures (like island chains formed around stable
periodic orbits or invariant tori). The main features of the phase space at a relatively
high rotation rate are shown in Fig. 9.3 where the PSS for Lz = 0 trajectories is
displayed together with four acoustic rays shown on the position space and on the
PSS.

For such mixed systems, quantum chaos studies [29, 30] predict that the different
phase space regions shown in Fig. 9.3 (the two island chains, the chaotic regions, and
the whispering gallery region) are quantized independently. The frequency spectrum



272 F. Lignières

is then described as a superposition of independent frequency subsets associated with
these phase space regions. In addition, the large number of invariant structures in the
island chains regions and in the whispering gallery region enables to apply the EBK
quantization method leading to regular frequency subsets. By contrast, the frequency
subset associated with the chaotic region is expected to be irregular but with generic
statistical properties such as described in the previous section. The island chains
shown in Fig. 9.3 have been quantized in [31] to obtain:

ωn� = nδn + �δ� + α where δn = π∫ b
a dσ/cs

(9.21)

where σ is the curvilinear coordinate along the periodic orbit and the integral is
computed between the end points of the orbit (these points are shown in Fig. 9.3 for
the two-period and the six-period periodic orbits and are denoted (a, b) and(a′, b′) ,
respectively). The regular spacing δn depends on the sound speed along the periodic
orbit while δ� (whose expression is given in [31]) depends on the sound speed and
on its transverse derivative along the same orbit. The integers n and � are the number
of nodes of the corresponding modes in the directions parallel and transverse to the
orbit.

The above predictions on high-frequency p-modes have been confronted with
numerically computed axisymmetric modes (using the same star model). The first
prediction is that modes can be classified as chaotic modes, island modes or whis-
pering gallery modes. This can indeed be achieved with the help of a phase-space
representation of the modes. With this classification, the frequency spectrum com-
puted in the range [9ω1, 12ω1] (where ω1 is the lowest acoustic frequency) has been
split into the four subspectra shown in Fig. 9.4.

From these data, we could verified that, in accordance with the asymptotic theory,
(i) the subspectra associated with the structured phase space region are regular,
(ii) the theoretical expression of δn agrees with the empirical values within a few
percent, (iii) the distribution of the consecutive frequency spacings taken from the
chaotic sub-spectrum agrees reasonably well with the Wigner’s distribution.

The asymptotic theory based on the acoustic ray model can thus reproduce quanti-
tative and qualitative features of the actual high-frequency spectrum. However, there
are also some limitations to the asymptotic theory that does not exist in the case
of a non-rotating spherically symmetric star. Maybe the most important one is that
the prediction of the chaotic subspectra concerns its statistical properties but not the
individual frequencies. There exist a Fourier-like formula (called the Gutzwiller trace
formula [24]) that relates all the periodic orbits of the chaotic phase space to the whole
spectrum, but this formula is very delicate to use in practice. Another limitation con-
cerns the coupling between two modes of similar frequencies associated with two
dynamically independent regions of phase space. The avoided crossing effect be-
tween such modes is not taken into account by the ray dynamics and is thus expected
to induce deviations from the asymptotic behavior.

Despite these limitations, the a priori information that the asymptotic theory pro-
vides on the structure of the frequency spectrum should be important to interpret the
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Fig. 9.4 Frequency subspectra of four classes of axisymmetric p-modes of a� = 0.59(G M/R3
e )

1/2

polytropic model of star: a the two-period island modes, b the chaotic modes antisymmetric with
respect to the equator, c the six-period island modes, and d some whispering gallery modes. For
the subspectra (a) and (d), the height of the vertical bar specifies one of the two quantum numbers
characterizing the mode

observed frequency spectra of rapidly rotating stars. For example, synthetic spec-
tra given by the asymptotic theory (complemented by informations on the visibility
and the excitation of the modes) might be used to construct and test identification
schemes. In this context, a first step would be to disentangle the regular part from
the irregular part of the spectrum.

9.5 Conclusions

We have seen that ray models can be used to construct asymptotic theory of modes
even when the eigenvalue problem is not separable. The methods and concepts,
developed in the context of quantum physics, rely on the Hamiltonian character of the
ray dynamics. For example, the structure of the frequency (or energy level) spectrum
has been shown to depend on the nature of the Hamiltonian dynamics (integrable,
fully chaotic, mixed). It is regular for an integrable system, irregular for a fully chaotic
system, and a superposition of regular and irregular spectra for a mixed system.
These methods and concept have been used to construct an asymptotic theory based
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on the Hamiltonian acoustic ray dynamics that has been successfully confronted to
numerically computed adiabatic p-modes. In principle, the same procedure could be
applied to model other types of stellar oscillation modes.
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Chapter 10
Angular Momentum Transport by Regular
Gravito-Inertial Waves in Stellar Radiation
Zones

Stéphane Mathis

Abstract In this chapter, the complete interaction between low-frequency internal
gravity waves and differential rotation rotation in stably strongly stratified stellar
radiation zones is examined. First, the modification of the structure of these waves
due to the Coriolis acceleration is obtained. Then, their feed-back on the angular
velocity profile through their induced angular momentum transport is derived. Next,
the case of a weak differential rotation is studied. Finally, perspectives are discussed.

10.1 Context and Motivation

In standard models of stellar interiors, radiation zones, which are convectively stable,
are postulated to be without motion other than rotation. But various observational
results (e.g. surface abundances of light elements, helio- and now asteroseismology)
show that these regions are the seat of transport and of mild mixing. The most
likely cause of such mixing is stellar differential rotation. First, it drives a large-scale
meridional circulation. Second, since in general the star rotates differentially, shear
instabilities may appear (see [1] for a review of these processes). Series of models
have been built that include a self-consistent evolution of the internal-rotation profile,
and for massive stars they agree rather well with the observations (see [2]). The case of
the Sun is somewhat different: like all other stars that have a deep surface convection
zone, it has been spun down during its infancy. When only the meridional circulation
and the “classical” hydrodynamic instabilities are invoked, models predict a Sun
with a core rotating much faster than the surface [3–7] with a gradient which is not
compatible with helioseismology [8–10]. One must conclude therefore that another,
more powerful process is operating, at least in solar like stars. The most plausible
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Fig. 10.1 Evolution of the (differential) rotation profile (averaged on latitudes) in a 1.2M� star (its
metallicity is Z = 0.02) with an initial rotation velocity of 50 km s−1. This is obtained making
simulations using the STAREVOL code (cf. [88] and references therein) where the transport of
angular momentum by the meridional circulation, the shear vertical turbulence, and the internal
gravity waves are taken into account. The black arrows shows the successive angular momentum
extraction fronts (the first is represented by the continuous line, the second one by the dashed line),
which are mainly driven by the angular momentum extraction at the surface by the wind. The curves
are labeled according to the corresponding ages in Gyrs (adapted from [18], courtesy Astronomy
and Astrophysics)

candidates are magnetic torquing ([11, 12] and references therein, [13, 14]) and
momentum transport by Internal Gravity Waves (hereafter IGWs; [15–18]).

IGWs are thus now considered as an essential transport mechanism in (differen-
tially) rotating stellar radiation zones, which are the seat of the mixing during star
evolution (cf. [18] and Fig. 10.1).

Their treatment suffers from two major weaknesses. The first is the crude descrip-
tion of their generation by turbulent convection. The second is that the action of
(differential) rotation on the waves is not taken into account.

This is why we have undertaken to improve the modeling of the transport by
internal waves by introducing the effects of the Coriolis acceleration. Indeed, the
low-frequency internal waves that are responsible for the deposition or the extraction
of angular momentum (cf. [17]) can be strongly influenced by the rotation because
the frequencies of the waves may be of the same order as the inertial frequency (2�
where� is the star’s angular velocity). Then, internal waves become gravito-inertial
waves (cf. [19–21]) and the Coriolis acceleration is thus an essential restoring force
for the wave dynamics as the buoyancy one associated with the stable stratification.
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Moreover, IGWs are excited and propagate in regions that are differentially rotat-
ing both in the radial and in the latitudinal directions. This is the reason why the
treatment of the complete interaction between the low-frequency IGWs and the dif-
ferential rotation, which is chosen as generally as possible, has been undertaken.

In this lecture, we thus show how the structure of IGWs and their induced-transport
are modified (Sects. 10.2 and 10.3). Then, we illustrate our purpose in the frame of
the simplified case where the rotation is assumed to be only weakly differential
(Sect. 10.4). Next, the question of the excited spectrum is discussed (Sect. 10.5).
Finally, in Sect. 10.6, perspectives are discussed.

10.2 Structure of Low-Frequency Waves Influenced by the
Coriolis Acceleration

In stellar radiation zones, the transport of angular momentum may be dominated
by low-frequency waves with σ � N , where σ and N are respectively the wave
frequency and the Brunt–Vaïsälä frequency, which relates to buoyancy. Moreover, in
a (differentially) rotating stellar radiation zone, one must also consider the Coriolis
acceleration, which is characterized by the inertial frequency (2�). One then has to
quantify the relative importance of each restoring force in the wave dynamics, and
whether the effects of the Coriolis acceleration can be treated in a perturbative way.

In the Sun, the answer is very clear for the acoustic waves which have frequencies
much greater than ��. The effects of the Coriolis acceleration can be treated as
a perturbation (e.g. rotationally split frequencies). However, in the case of low-
frequency IGWs, which have frequencies around 1μHz, the spin parameter ν,which
measures the relative importance of rotation and stratification

ν = 2�

σ
= R−1

o , (10.1)

is of the order of unity (see Fig. 10.2, Ro is the Rossby number). In this case, as illus-
trated in the diagram in Fig. 10.3 Coriolis effects cannot be treated as a perturbation.
This will be also the case in rapid rotators such as young solar-type stars and massive
stars.

The aim of this work is thus to examine how the improved description of wave-
induced transport of angular momentum taking into account the effect of the Coriolis
acceleration modifies the spatial structure of IGWs and, consequently, the angular
momentum extraction/deposit by IGWs.

We first recall the main assumptions of our model and give the correspond-
ing dynamical equations. The derivation of these equations has been presented in
[22–25].
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Fig. 10.2 Spin parameter
ν = 2�/σ for the Sun (we
use ��

2π = 430 nHz) in the
frequency range that may be
relevant for the calculation of
angular momentum transport
(taken from [23]; courtesy
Solar Physics)

Fig. 10.3 Waves type in a
differentially rotating stellar
radiation zone and associated
frequencies ( fL is the
Lamb’s frequency) (taken
from [25]; courtesy
Astronomy and
Astrophysics)

10.2.1 Dynamical Equations

We expand the macroscopic internal velocity field in the radiative region as

V (r, t) = r sin θ� (r, θ) êϕ + u (r, θ, ϕ, t) , (10.2)

where the first azimuthal term is the velocity associated with the differential rotation
while u is the wave velocity field. r, θ and ϕ are the classical spherical coordinates
with their associated unit vectors

{
êr , êθ , êϕ

}
and t is the time. We ignore any large-

scale velocity field that could be superposed (Fig. 10.4).
To treat the IGWs dynamics in a differentially rotating star, we have to solve the

complete inviscid system formed by the momentum equation

(
∂t +�∂ϕ

)
u + [

2�êz × u + r sin θ (u · ∇�) êϕ
] = − 1

ρ
∇P ′ − ∇V ′ + ρ′

ρ2 ∇P,

(10.3)
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Fig. 10.4 Distribution in the complex plane (ω, K/|τ | where K is the thermal diffusivity) of the
eigenvalues of gravito-inertial modes in a 1.5 M� zero age main sequence star (Z = 0.02), rotating
with a uniform rotation (�s ) such that�s/�K = 0.3, computed by [21]. The system of dynamical
equations is solved taking into account viscous and thermal dissipation that thus leads to complex
eigenfrequencies σ = ω + iτ , where ω corresponds to the usual mode frequency while τ is the
damping. Two strongly different regimes can be isolated: in the sub-inertial regime, the eigenvalue
behaviour is chaotic while it becomes regular in the super-inertial regime (adapted from [21];
courtesy Astronomy and Astrophysics)

the continuity equation
(
∂t +�∂ϕ

)
ρ′ + ∇ · (ρu) = 0, (10.4)

the energy transport equation, which we give here in the adiabatic limit

(
∂t +�∂ϕ

) (
P ′

�1 P
− ρ′

ρ

)
+ N 2

g
ur = 0, (10.5)

and the Poisson’s equation

∇2V ′ = 4πGρ′. (10.6)

ρ, V, P are respectively the fluid density, gravific potential (g = −∇V is the grav-
ity), and pressure. Each of them has been expanded as X (r, θ, ϕ, t) = X (r) +
X ′ (r, θ, ϕ, t) ,where X is the mean hydrostatic value of X on the isobar (which is the
generalisation of the equipotential in the case of a differential rotation which disturbs
the hydrostatic balance through the centrifugal force), X ′ being its wave’s associ-

ated fluctuation. G is the universal gravity constant. N 2 = g
(

1
�1

d ln P
dr

− d ln ρ
dr

)
is

the Brunt–Vaïsälä frequency and �1 = (∂ ln P/∂ ln ρ)S (S being the macroscopic
entropy) is the adiabatic exponent.
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êz = cos θ êr − sin θ êθ is the unit vector along the rotation axis. The terms in
brackets correspond to the Coriolis acceleration in the case of a general differential
rotation with the extra acceleration r sin θ (u · ∇�) êϕ [16]. Dt = (

∂t +�∂ϕ
)

is
the Lagrangian derivative which accounts for the Doppler shift due to differential
rotation.

The non-adiabaticity of waves will be treated in the next section by using the
quasi-adiabatic approximation (cf. [26]).

10.2.2 Main Assumptions

To solve this system, the following approximations can be assumed:

• the Cowling approximation: the fluctuations of the gravitational potential associ-
ated with waves are neglected (see e.g. [27]).

• the anelastic approximation: since we are studied low-frequency IGWs, the anelas-
tic approximation ( i.e.∇ · (ρu) = 0), where the acoustic waves are filtered out, is
assumed.

• the JWKB approximation: waves which are studied here are low-frequency ones
such that σ � N (σ is the wave frequency in an inertial reference frame). Then,
the JWKB approximation can be adopted. This also imply the quasi—linear
approximation where the non-linear wave-wave interactions are not taken into
account (see the discussions in [25, 28]).

• the Traditional approximation: stellar radiation zones are stably strongly strati-
fied regions. Then, in the case where the angular velocity (�) is reasonably weak
compared to the break-down one, �K = √

G M/R3 (M and R being respectively
the star’s mass and radius), we are in a situation where the centrifugal acceler-
ation can be neglected to the first order and where 2� � N . This allows to
adopt the Traditional approximation where the latitudinal component (along êθ )
of the rotation vector � = �êz = �V êr + �H êθ (with �V = � cos θ and
�H = −� sin θ ) can be neglected for all latitudes.

Let us present a brief local analysis of this approximation in the simplest case of
a uniform rotation (see also [20]). The wave vector k and Lagrangian displacement
ξ are expanded as

k = kV êr + kH and ξ = ξV êr + ξ H , (10.7)

where kH = kθ êθ + kϕ êϕ, kH = |kH |, ξ H = ξθ êθ + ξϕ êϕ, ξH = |ξ H | and
ξ ∝ exp [i (k · r − σ t)] .

For low-frequency waves in radiation zones, we can write k·ξ=kV ξV +kH ·ξ H ≈0
since ∇ · (ρξ) ≈ 0 (this is the anelastic approximation), from which we deduce that
ξV /ξH ≈ −kH/kV .

Next, using the results given in [29] , the dispersion relation for the low-frequency
gravito-inertial waves is obtained
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σ 2 ≈ N 2 k2
H

k2 + (2� · k)2

k2 , (10.8)

where the two terms correspond respectively to the dispersion relations of IGWs and
of inertial waves. In the case where 2� � N and σ � N , the previous dispersion
relation gives k2

H/k
2 � 1. The vertical wave vector is then larger than the horizontal

one while the displacement vector is almost horizontal: |kH | � |kV |, |ξV | � |ξH |.
On the other hand, we get (2� · k)2 ≈ (2�V kV )

2 . The latitudinal component of the
rotation vector can thus be neglected in whole the sphere.

Let us now adopt a global point of view. In the general case, the operator which
governs the spatial structure of waves, the Poincaré operator, is of mixed type (elliptic
and hyperbolic) and not separable (for a detailed discussion we refer the reader to [21,
30, 31]). This leads to the appearance of detached shear layers associated with the
underlying singularities of the adiabatic problem that could be crucial for transport
and mixing processes in stellar radiation zones, since they are the seat of strong
dissipation [21, 31–33] .

Let us first focus on the case of a solid-body rotation (� = �s). In the largest
part of stellar radiation zones, we are in a regime where 2�s � N . Since we
are interested here in low-frequency waves (σ � N ), the Traditional approxima-
tion, which consists in neglecting the latitudinal component of the rotation vector
(�s êz), −�s sin θ êθ , in the Coriolis acceleration, can be adopted in the super-inertial
regime where 2�s < σ � N (see e.g. [34] ; for a modern description in a stellar
context see [20, 24, 35]). Then, variables separation in radial and horizontal eigen-
functions remains possible (c.f. [3]) that corresponds to the ergodic (regular) elliptic
gravito-inertial modes family (the E1 modes in [21, 31] ; cf. Figs. 10.2 and 10.5).
This approximation has however to be carefully used, as it changes the nature of
the Poincaré operator, and removes the singularities and associated shear layers that
appear. Then, in the sub-inertial regime, where σ ≤ 2�s, that corresponds to the
equatorially trapped hyperbolic modes (the H2 modes in [21, 31] ; cf. Figs. 10.2,
10.5), the Traditional Approximation fails to reproduce the waves behaviour and
the complete momentum equation has to be solved (detailed examples are given in
[37, 38]).

As a first step, we thus have studied the regular elliptic waves for which the
Traditional Approximation applies. Its application domain in the case of a general
differential rotation will be discussed in Sect. 10.2.4

- the quasi-adiabatic approximation: Following [16, 26] , we adopt the quasi-
adiabatic approximation to treat the thermal damping of IGWs. Let us recall here
that this damping is responsible for the net transport of angular momentum which is
due to the bias in the wave’s Doppler shift by differential rotation between retrograde
(m>0) and prograde waves (m < 0)1 that transport respectively a negative and a
positive flux of angular momentum (see (10.56) and [39]).

1 The wave phase is expanded as exp [i (mϕ + σ t)] .
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Fig. 10.5 Simulation of gravito-inertial modes in a 1.5 M� zero age main sequence star (Z = 0.02),
rotating with a uniform rotation (�s ) such that �s/�K = 0.3, computed by [21] (cf. Fig10.4
4). Webs of characteristics for a H2–hyperbolic mode (a) and a E1–regular elliptic mode (b). The
characteristics are the curve along which the energy propagates. The si and zi locations correspond

to N (si ) =
(
ω2 − 4�

2
s

)1/2
and N (zi ) = ω while the arrow on the outer sphere (a) marks the

critical latitude (θc) where θc = cos−1
(
σ/2�s

)
. One hundred and two hundred reflections have

been respectively drawn for the considered H2 and E1–modes. It has to be emphasized that the H2–
mode is trapped in an equatorial belt (ω ≤ 2�s ) while the E1–mode is living in the whole sphere
without any critical latitude (ω > 2�s ) (adapted from [21], courtesy Astronomy and Astrophysics)

10.2.3 Wave Pressure and Velocity Fields

Under those approximations, the wave’s pressure and velocity field are then obtained
in the case of a general differential rotation �(r, θ) (the details of the derivation are
given in [25]):

p̃ (r, θ, ϕ, t) =
∑
σ,m, j

P ′
j,m (r, θ, ϕ, t) , (10.9)

where

P ′
j,m(r, θ, ϕ, t) = −ρw j,m

(
r, θ; ν̂)

sin
[
� j,m (r, ϕ, t)

]
exp

[−τ j,m
(
r, θ; ν̂)

/2
]
,

(10.10)
and

u (r, t) =
∑

k={r,θ,ϕ}

⎡
⎣ ∑
σ,m, j

uk; j,m (r, t)

⎤
⎦ êk, (10.11)
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where

ur; j,m(r, t) = σ̂

N

λ
1/2
j,m

(
r; ν̂)

r
w j,m

(
r, θ; ν̂)

sin
[
� j,m (r, ϕ, t)

]

× exp
[−τ j,m

(
r, θ; ν̂)

/2
]
,

(10.12)

uθ; j,m(r, t) = − σ̂
r

Gθj,m
(
r, θ; ν̂)

cos
[
� j,m (r, ϕ, t)

]
exp

[−τ j,m
(
r, θ; ν̂)

/2
]
,

(10.13)

uϕ; j,m(r, t) = σ̂

r
Gϕj,m

(
r, θ; ν̂)

sin
[
� j,m (r, ϕ, t)

]
exp

[−τ j,m
(
r, θ; ν̂)

/2
]
.

(10.14)
The “local” frequency (σ̂ ) 2 which accounts for the Doppler shift by the differential
rotation and the “spin parameter” (see [20]) are defined:

σ̂ (r, θ) = σ + m�(r, θ) and ν̂ (r, θ) = 2�(r, θ)

σ̂ (r, θ)
= R̃−1

o , (10.15)

where R̃o is the local Rossby number. Unlike the particular case of uniform rotation,
variables do not separate neatly anymore in the case of general differential rotations
�(r) and �(r, θ) . The velocity components are thus expressed in terms of the 2D
dynamical pressure (P/ρ) eigenfunctions w j,m which are solutions of the following
eigenvalue equation:

Oν̂;m
[
w j,m

(
r, x; ν̂)] = −λ j,m

(
r; ν̂)

w j,m
(
r, x; ν̂)

. (10.16)

We define the General Laplace Operator (GLO)

Oν̂;m = 1

σ̂

d

dx

[ (
1 − x2

)
σ̂D (

r, x; ν̂) d

dx

]
− m

σ̂ 2D(r, x; ν̂)
(

1 − x2
) ∂x�

σ̂

d

dx

− 1

σ̂

[
m2

σ̂D (
r, x; ν̂) (

1 − x2
) + m

d

dx

(
ν̂x

σ̂D (
r, x; ν̂)

)] (10.17)

with

D (
r, x; ν̂) = 1 − ν̂2x2 + ν̂

(
∂x�/σ̂

)
x

(
1 − x2

)
(10.18)

and x = cos θ. Oν̂;m is the generalisation of the classical Laplace tidal operator
[41], the eigenfunctions w j,m being thus a generalisation of the Hough functions

2 Note that σ̂ can vanish that corresponds to the corotation resonance. In layer(s) where this hap-
pens (which are called critical layers), a careful treatment of the complete fluid dynamics equations
has to be undertaken that is beyond the scope of the present paper (see [40]).
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[42, 43]. λ j,m
(
r; ν̂)

are the associated eigenvalues; here, we focus on positive ones
that correspond to propagative waves (cf. [43]). Furthermore, the GLO is a differential
operator in x only and the w j,m form a complete orthogonal basis

1∫

−1

w∗
i,m

(
r, x; ν̂)

w j,m
(
r, x; ν̂)

dx = Ci,mδi, j , (10.19)

where Ci,m is the normalisation factor and δi, j is the usual Kronecker symbol. The
boundary conditions are ruled by the regularity at the poles.

The dispersion relation is then given by

k2
V ; j,m (r) = λ j,m

(
r; ν̂)

N 2

r2 , (10.20)

where kV ; j,m is the vertical component of the wave vector (λ j,m has the dimension
of

[
t2

]
). That leads to the following expressions for the JWKB phase function

� j,m (r, ϕ, t) = σ t +
rc∫

r

kV ; j,mdr ′ + mϕ (10.21)

(rc is the radius of the basis (or the top) of the adjacent convective region that excites
the waves) and for the damping rate

τ j,m =
rc∫

r

K
λ

3/2
j,m

(
r; ν̂)

N N 2
T

σ̂

dr ′

r ′3 , (10.22)

K being the thermal diffusivity. The Brunt–Vaïsälä frequency takes into account
the effects of both the thermal and the chemical composition gradients, with
the classical notations N 2 = N 2

T + N 2
μ where N 2

T = (gδ/HP )
(∇ad − ∇)

and

N 2
μ = (gφ/HP )∇μ, where HP = |dr/d ln P| δ = − (

∂ ln ρ/∂ ln T
)

P,μ , φ =
(∂ ln ρ/∂ lnμ)P,T , ∇ad = (

∂ ln T /∂ ln P
)
ad , ∇ = ∂ ln T /∂ ln P and ∇μ =

∂ lnμ/∂ ln P, with T and μ being respectively the mean temperature and molec-
ular weight.

On the other hand, the latitudinal and azimuthal eigenfunctions are defined

Gθj,m
(
r, x; ν̂) = 1

σ̂ 2

1

D (
r, x; ν̂) √

1 − x2

[
−

(
1 − x2

) d

dx
+ mν̂x

]
w j,m (10.23)

Gϕj,m
(
r, x; ν̂) = 1

σ̂ 2

1

D (
r, x; ν̂) √

1 − x2
×

[
−

(
ν̂x −

(
1 − x2

) ∂x�

σ̂

) (
1 − x2

) d

dx
+ m

]
w j,m .

(10.24)
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Fig. 10.6 Synthetic internal rotation profile as it may be seen in the Sun (cf. [10]):
�syn (r, θ) = �RZ + �RZ Ac [1 − Erf ((r − Rc)/ lc)] + 1/2 [1 + Erf ((r − RT )/ lT )] (A + B
cos2 θ + C cos4 θ − �RZ), where �RZ = 430 nHz, Ac = 1/2 (such that �syn (0, θ) = 2�s ),
Rc = 0.15RT lc = 0.075RT RT = 0.71R� (the position of the tachocline), lT = 0.05RT , A =
456 nHz, B = −42 nHz and C = −72 nHz (we assume here a tachocline that is thicker than in
reality) (taken from [90]; courtesy Communications in Asteroseismology)

10.2.4 The Traditional Approximation in the Case of a General
Differential Rotation

As it has been emphasized by [24] and references therein, the Traditional Approxi-
mation has to be used carefully since it modifies the mathematical properties of the
adiabatic wave operator. Here, in the case of a general differential rotation law, it is
applicable in spherical shell(s) such that D > 0 everywhere (∀r and ∀θ ∈ [0, π ]).
There, the adiabatic wave operator is elliptic that corresponds to regular (elliptic)
gravito-inertial waves. In the other spherical shell(s), where both D < 0 and D > 0,
the adiabatic wave operator is hyperbolic and the Traditional Approximation can-
not be applied because of the adiabatic wave’s velocity field (and wave operator)
singularity where D = 0. Regularization is allowed there by thermal and viscous
diffusions that lead to shear layers, the attractors, where strong dissipation occurs
that may induce transport and mixing. In Fig. 10.6, we illustrate for a given chosen
theoretical angular velocity profile (cf. Fig. 10.7) how those two types of spherical
shells (respectively where the Traditional Approximation is allowed or forbidden)
could appear.

10.3 Transport of Angular Momentum

10.3.1 Action of Angular Momentum

Since the complete wave’s velocity field is derived, we focus on the induced-transport
of angular momentum. The vertical and horizontal Lagrangian angular momentum
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Fig. 10.7 D (
r, θ; 2�syn/σ

)
as a function of r and θ (cf. (10.18)) for σ = 500 nHz (Le f t) and

σ = 1000 nHz (Right) for axisymmetric waves (m = 0). The critical surface D (
r, θ; 2�syn/σ

) =
0 is given by the thick black line and the iso-D lines such that D (

r, θ; 2�syn/σ
)
> 0 and

D (
r, θ; 2�syn/σ

)
< 0 are respectively given by the red and the blue lines. The Traditional Approx-

imation (T. A.) applies in spherical shell(s) such that D > 0 everywhere (∀r and ∀θ ∈ [0, π ]); there,
waves are regular at all latitudes. In other spherical shell(s), where both D > 0 and D < 0, the T.
A. does not apply due to the singularity at D = 0. Therefore, for�syn, the T. A. does not apply for
σ = 500 nHz while it applies for σ = 1000 nHz in the external spherical shell with the inner border
given by the thick red circle (taken from [90]; courtesy Communications in Asteroseismology)

fluxes are respectively defined:

FAM
V (r, θ) =

∫

σ

〈
ρr sin θur uϕ︸ ︷︷ ︸

I

+ ρr sin θ2� cos θurξθ︸ ︷︷ ︸
II

〉

ϕ

dσ,

and FAM
H (r, θ) = ρr sin θ

∫

σ

〈
uθuϕ

〉
ϕ

dσ,

(10.25)

where 〈· · · 〉ϕ = (1/2π)
∫ 2π

0 · · · dϕ and where we sum over the excited spectrum.
The Lagrangian wave displacement is defined such that: u = (

∂t +�∂ϕ
)
ξ −

r sin θ (ξ · ∇�) êϕ. Note that in the rotating case the vertical flux (FAM
V ) is the

sum of the Reynolds stresses across an Eulerian surface (term I) plus a Lagrangian
contribution (term II) (see [44]). Using (10.13, 10.14), we get FAM

H = 0. Then, fol-
lowing the methodology given in [16, 23, 24] , we get the vertical action of angular
momentum (called the angular momentum luminosity in the stellar context, a term
coined by [39])

LAM
V (r, x) = r2FAM

V

= −r2
c

∫

σ

∑
m, j

{
m̂ j,m

(
rc, x; ν̂c

)
σ̂CZ

FE
V ; j,m

(
rc, x; ν̂c

)
exp

[−τ j,m
(
r, θ; ν̂)]}

dσ.

(10.26)
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which is conserved in the adiabatic limit (cf. [45, 46]). rc is the radius of the basis
(or the top) of the adjacent convective region that excites the waves while ν̂c =
2�CZ (rc, θ) /σ̂CZ, where σ̂CZ = σ + m�CZ (rc, θ) �CZ being its angular velocity.
On the other hand, FE

V ; j,m

(
rc, x; ν̂c

)
is the monochromatic energy flux injected by

turbulent convective movements at r = rc in the studied radiation zone and

m̂ j,m
(
r, x; ν̂) =

sin θσ̂ 2w j,m

[
Gϕj,m − ν̂ cos θGθj,m

]

w2
j,m

(10.27)

is the 2D function which describes its conversion into angular momentum flux.

10.3.2 Transport of Angular Momentum by the Waves: The Shear
Layer Oscillation and Secular Effects

Then, waves deposit their angular momentum inside the star as they are damped. The
deposition of angular momentum is then ruled by the radial derivative of the action
of angular momentum [7]

ρ
d

dt

[
r2〈�〉θ

]
= ± 1

r2 ∂r

[
〈LAM

V (r, θ)〉θ
]
, (10.28)

where 〈· · · 〉θ = 1/2
∫ π

0 · · · dθ. The “+” (“−”) sign in front of the action of angular
momentum corresponds to a wave traveling inward (outward).

Let us first take a look at the damping integral given in (10.22) and assume that
both prograde and retrograde waves are excited with the same amplitude and have
the same eigenvalue λ j,m . In solid-body rotation, both waves are equally dissipated
when traveling inward and there is no impact on the distribution of angular momen-
tum. In the presence of differential rotation, the situation is different. If the interior
is rotating faster than the convection zone, the local frequency of prograde waves
decreases, which enhances their dissipation; the corresponding retrograde waves are
then dissipated further inside. This produces an increase of the local differential rota-
tion, and creates a double-peaked shear layer because local shears are amplified by
waves, even a small perturbation triggering this (the prograde waves transport a posi-
tive flux of angular momentum while the retrograde waves transport a negative one).
In the presence of shear turbulence, this layer oscillates, producing a “Shear Layer
Oscillation” or SLO (cf. [47, 48]). This is the first important feature of wave-mean
flow interaction.

This SLO acts as a filter, through which most low-frequency waves cannot pass.
However, if the core is rotating faster than the surface, this filter is not quite symmetric,
and retrograde waves will be favored. As a result, a net negative flux of angular
momentum will result, and produce a spin down of the core [17]. This is the filtered
angular momentum action, which contributes to the secular evolution of angular
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momentum (for details, see [18]). It plays a key role in flatening the rotation profile
as observed in the present Sun [49].

Then, following [50], averaging over latitudes � and LAM
V in spherical shell(s)

where the Traditional Approximation applies, and expanding the vertical action of
angular momentum as LAM

V = ∑
l LAM

V ;l (r) sin2 θ Pl (cos θ) , we get for the aver-
aged rotation rate on an isobar (〈�〉θ )

ρ
d

dt

(
r2〈�〉θ

)
− 1

5r2 ∂r

(
ρr4〈�〉θU2

)

= 1

r2 ∂r

(
ρνV r4∂r 〈�〉θ

)
− 1

r2 ∂r

[
〈LAM;fil

V 〉θ (r)
]

+ 〈�FL〉θ (r) , (10.29)

and for the first mode of the latitudinal differential rotation

ρ
d

dt

(
r2�2

)
− 2ρ〈�〉θ

[
2V2 − 1

2

d ln
(
r2〈�〉θ

)
d ln r

U2

]

= 1

r2 ∂r

(
ρνV r4∂r�2

)
− 10ρνH�2 − 1

r2 ∂r

[
LAM

V ;2 (r)
]

+ �FL; 2 (r) , (10.30)

where � = 〈�〉θ + �̃2 (r, θ) and �̃2 = �2 (r) [P2 (cos θ)+ 1/5] . d/dt is the
Lagrangian derivative that accounts for the contractions and the dilatations of the star
during its evolution. The meridional circulation is expanded in Legendre polynomials
as

UM (r, θ) =
∑
l>0

{
Ul (r) Pl (cos θ) êr + Vl (r) ∂θ Pl (cos θ) êθ

}
, (10.31)

where Vl = 1/ [l (l + 1) ρr ] d
(
ρr2Ul

)
/dr is obtained assuming the anelastic

approximation; U2 is the only mode which leads to a net transport of angular momen-
tum on an isobar as demonstrated in [51] . (νV , νH ) are respectively the vertical and
the horizontal turbulent viscosities. Finally, �FL and �FL; 2 are the horizontal aver-
age of the torque of the Lorentz force and its first latitudinal mode.

These equations give the evolution of the differential rotation, both in the radial and
in the latitudinal directions, in the spherical shell(s) where the Traditional Approxi-
mation can be applied. The evolution equations for the differential rotation (both in r
and θ ) capturing gravito-inertial waves feedback is thus derived, taking into account
the modification of IGWs through the Coriolis acceleration and their feedback on
the angular velocity profile through the net induced transport of angular momentum
due to the differential damping of retrograde and prograde waves.

Then, the associated boundary conditions at r = rb and r = rt , where rb and
rt are respectively the radius of the base and of the top of the considered radiative
region, are given by:

d

dt

⎡
⎣

rb∫

0

r4ρ〈�〉θdr

⎤
⎦ = 1

5
r4ρ〈�〉θU2 − FB(rb)− 〈LAM;fil.

V 〉θ (rb) (10.32)
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and

d

dt

⎡
⎣

R∫

rt

r4ρ〈�〉θdr

⎤
⎦ = −1

5
r4ρ〈�〉θU2 −F�+FB(rt )+〈LAM;fil.

V 〉θ (rt ) , (10.33)

F� and FB being respectively the flux of angular momentum loss at the surface and
the magnetic angular momentum flux through the interfaces. In the solar case, rb = 0
and rt = rSLO.

We are thus now in a position where we are able to get a coherent picture of
solar and stellar radiation zone dynamics, taking into account the highly non-linear
interaction between the differential rotation, the associated meridional circulation,
the vertical and horizontal shear-induced turbulence, a potential fossil magnetic field,
and the low-frequency waves where the action of the rotation on the waves through
the Coriolis acceleration and their feed-back on the angular velocity distribution are
treated in a coherent way. In the following diagram, those interactions are summarized
with the action of each process:

• the meridional circulation, which is due to structural adjustments and to the extrac-
tion of angular momentum at the surface by the wind [52, 53], advects angular
momentum, chemical elements and the magnetic field;

• the shear-induced turbulence acts to suppress its cause, namely the vertical and
the horizontal gradients of angular velocity;

• the fossil magnetic field, which is sheared by the differential rotation, advected
by the meridional circulation, and diffused by ohmic effects, transports angular
momentum through the large-scale Lorentz torque and the Maxwell stresses asso-
ciated with MHD instabilities;

• the low-frequency internal waves generated by the convective movements transport
angular momentum as well as magnetic field, that modifies the angular velocity
distribution and the associated mixing;

• the braking due to the wind in the early phases, forces an extraction of angular
momentum at the surface, which drives the behaviour of the meridional circulation
and the potential wave-induced fronts of angular momentum extraction. Fig. (10.8).

10.4 The Weak Differential Rotation Case

10.4.1 Definitions

Let us begin by looking at the differential rotation law. First, from now on, we restrict
ourselves to a “shelllular” rotation � [r (P)] (in other words, the angular velocity
is constant on an isobar) due to the anisotropic turbulence in a strongly stratified
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Fig. 10.8 Dynamical
transport processes in stellar
radiation zones: those
regions are the seat of highly
non-linear interactions
between the differential
rotation, the meridional
circulation, the turbulence,
the magnetic field, and the
IGWs (taken from [89];
courtesy Solar Physics)

star [52]; r (P) is the radius of the isobar, which is the generalization of the equipo-
tential in the case of differential rotation. Next, we split this “shelllular” rotation law
into a solid body rotation,�s, and a (small) differential rotation fluctuation, δ� (r) .
This hypothesis will allow us to separate neatly the variables in the treatment of the
dynamical equations and the formalism presented hereafter remains valid only in the
case of “reasonable” values of the fluctuation of the angular velocity

(
δ�

)
around

its mean value
(
�s

)
and of the radial gradient of �. Thus, we write:

�(r, θ) ≈ �(r) = �s + δ� (r) where δ� (r) � �s . (10.34)

�s will be taken into account for the calculation of the structure of the low-frequency
adiabatic waves, while δ�will be accounted for only in the treatment of the damping
due to dissipative processes. This is the “weak differential rotation case”.

We now define the frequencies we shall use in this case:{
σs = σ + m�s

σ̂ (r) = σ̃ (r) = σ + m�(r) = σs + mδ� (r)
, (10.35)

σ is the wave’s frequency in the inertial frame, while σs is given in the corotating
frame (with the uniform rotation angular velocity �s). σ̃ (r) is the local frequency
Doppler-shifted by the differential rotation. Finally, the spin parameter becomes

ν̂s = νs = 2�s

σs
. (10.36)

Remember that we chose the sign of m such that the prograde waves have m < 0
while the retrograde waves have m > 0.

10.4.2 Wave Pressure and Velocity Fields

In the “weak differential rotation case”, a neat variable separation in r and θ is
obtained (cf. [20, 22, 24]) and we get:
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w j,m
(
r, θ; ν̂) = p̃ j,m (r)

ρ
� j,m (cos θ; νs) , (10.37)

and

Gθj,m
(
r, θ; ν̂) = 1

σ 2
s

p̃ j,m (r)

ρ
Hθ

j,m (cos θ; νs) , (10.38)

Gϕj,m
(
r, θ; ν̂) = 1

σ 2
s

p̃ j,m (r)

ρ
Hϕ

j,m (cos θ; νs) . (10.39)

Moreover, the pressure fluctuation becomes:

P ′ (r, θ, ϕ, t) =
∑
m, j

P ′
j,m (r, θ, ϕ, t) (10.40)

with

P ′
j,m = p̃ j,m (r)� j,m (cos θ; νs) exp [i (mϕ + σ t)] . (10.41)

The Hough functions (� j,m, Hθ
j,m and Hϕ

j,m) will be discussed later in this sec-
tion. Using the approximations described in Sect. 10.2.2 (the anelastic, the quasi-
adiabatic, the Traditional and the JWKB approximations), the wave velocity field is
then expanded as:

u =
⎧⎨
⎩

∑
m, j ur; j,m (r, θ, ϕ, t)∑
m, j uθ; j,m (r, θ, ϕ, t)∑
m, j uϕ; j,m (r, θ, ϕ, t)

(10.42)

where the monochromatic radial, latitudinal, and azimuthal components are given
by:

ur; j,m (r, θ, ϕ, t) = E j,m (r) sin
[
� j,m (r, ϕ, t)

]
� j,m (cos θ; νs)

× exp
[−τ j,m (r; νs) /2

]
, (10.43)

uθ; j,m (r, θ, ϕ, t) = − rkV ; j,m

� j,m (νs)
E j,m (r) cos

[
� j,m (r, ϕ, t)

] Hθ
j,m (cos θ; νs)

× exp
[−τ j,m (r; νs) /2

]
,

(10.44)

uϕ; j,m (r, θ, ϕ, t) = rkV ; j,m

� j,m (νs)
E j,m (r) sin

[
� j,m (r, ϕ, t)

] Hϕ
j,m (cos θ; νs)

× exp
[−τ j,m (r; νs) /2

]
,

(10.45)
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where the attenuation τ j,m will be made explicit in (10.56). In the JWKB regime, the
phase function (� j,m) is given by:

� j,m (r, ϕ, t) = σ t +
rc∫

r

kV ; j,mdr ′ + mϕ, (10.46)

where the vertical wave vector

k2
V ; j,m =

(
N 2

σ̃ 2 (r)

)
� j,m (νs)

r2 with � j,m (νs) = σ 2
s λ j,m

(
ν̂s

)
, (10.47)

has been drawn from the equation for the radial component of the Lagrangian
displacement ξ, where u = dξ/dt :

d2

dr2

(
ρ1/2r2ξr; j,m

)
+

[(
N 2

σ̃ 2 (r)

)
� j,m (νs)

r2

] (
ρ1/2r2ξr; j,m

)
= 0. (10.48)

This equation, obtained after variable separation in r and θ in (10.3–10.5), has been
derived using the anelastic approximation. The JWKB amplitude function (E j,m (r))
is given by

E j,m (r) = A j,mr− 3
2 ρ− 1

2

(
N 2

σ̃ 2

)− 1
4

, (10.49)

where the amplitude of the wave (A j,m) must be determined from boundary condi-
tions.Fig. 10.9.

This separation of variables is allowed by the Traditional Approximation and by
the “weak differential rotation approximation”; it leads to an equation that depends
only on θ for the angular function of P ′

j,m and of ur; j,m � j,m :

σ 2
s Oν̂s ;m

[
� j,m (x; νs)

] = Lνs ;m
[
� j,m (x; νs)

] = −� j,m (νs)� j,m (x; νs) ,

(10.50)
the GLO (cf. (10.17)) reducing to

Lνs ;m = d

dx

(
1 − x2

1 − ν2
s x2

d

dx

)
− 1

1 − ν2
s x2

(
m2

1 − x2 + mνs
1 + ν2

s x2

1 − ν2
s x2

)
, (10.51)

where x = cos θ. The differential rotation fluctuation
(
δ�

)
is only taken into

account for the Doppler shift of the waves and their dissipation (cf. (10.56)), but not
in the derivation of their horizontal spatial structure. In fact, even in the case of a
general shelllular rotation law �(r) , ν̂ = 2�/σ̂ depends on r as well as the eigen-
values (λ j,m) and the variables no longer separate. Equation (10.50) is the so-called
Laplace equation (cf. [41]) while the � j,m are the Hough functions (cf. [42, 54]).
In the non-rotating case, the Laplace operator (Lνs ;m) is equivalent to the classi-
cal horizontal spherical laplacian, and the Hough functions reduce to the associated
Legendre polynomials.
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Fig. 10.9 Hough functions:
(continuous lines)
ν = 0, m = 2;
ν = 0.86, σ = 1μHz
(dotted lines) m = 2 (dashed
lines) m = −2 (taken from
[89]; courtesy Solar Physics)

Let us briefly describe the main features of these Hough functions. First, since
Lνs ;m depends explicitely on m,we have� j,−m �= � j,m and� j,−m �= � j,m . In other
words, for a given j, prograde and retrograde waves have a different horizontal spatial
structure (see Fig. 10.10). This is crucial for the transport of angular momentum by
those waves that depends on the subtle balance between prograde and retrograde
waves (cf. [18] and references therein). Moreover, the transmission of the kinetic
energy flux of the turbulent motions, which are at the origin of the generation of the
waves at the interface between convection and radiation, is modified (cf. (10.27)).

Now, by using the latitudinal and the azimuthal components of the momentum
equation (10.3), and eliminating the pressure fluctuation, we obtain the respective
angular functions for uθ; j,m and uϕ; j,m, Hθ

j,m (x; νs) and Hϕ
j,m (x; νs) :

Hθ
j,m (x; νs) = σ 2

s Oθ
ν̂s ;m

[
� j,m (x; νs)

] = Lθνs ;m
[
� j,m (x; νs)

]
, (10.52)

where (cf. (10.23))

Lθνs ;m = 1(
1 − x2ν2

s

) √
1 − x2

×
[
−(1 − x2)

d

dx
+ mνs x

]
, (10.53)
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Fig. 10.10 (top) Eigenvalues� of Laplace’s tidal equation in the presence of rotation, in the range
that is relevant for a solar model and the Traditional Approximation. In the absence of rotation,
one has � = � (�+ 1) . (bottom) Equivalent horizontal eigenvalue �̃ (see text for details). (le f t)
Class I waves with 1 ≤ � ≤ 6, and m = −�+ 2 (black continuous line), m = 0 (blue dotted line),
m = � (red dashed line). (middle) Class I I I waves (s = 0) with negatives values of m (are shown
m = 0, . . . ,−5) are present in the relevant range of ν. (right) Class I V waves (s = −1) have
indices m = −1, . . . ,−6 (taken from [89]; courtesy Solar Physics)

and

Hϕ
j,m (x; νs) = σ 2

s Oϕ

ν̂s ;m
[
� j,m (x; νs)

] = Lϕ
νs ;m

[
� j,m (x; νs)

]
, (10.54)

where (cf. (10.24))

Lϕ
νs ;m = 1(

1 − x2ν2
s

) √
1 − x2

×
[
−νs x

(
1 − x2

) d

dx
+ m

]
. (10.55)

As we have for the Hough functions, we get Hθ
j,−m �= Hθ

j,m and Hϕ
j,−m �= Hϕ

j,m

since Lθ
νs ;−m �= Lθ

νs ;m, Lϕ
νs ;−m �= Lϕ

νs ;m and � j,−m �= � j,m .

These properties are illustrated in Figs. 10.9 and 10.10, where the eigenfunctions
� j,m,Hθ

j,m,Hϕ
j,m and their associated eigenvalues � j,m are given for prograde and

retrograde waves in the case where νs = 0.86 (σ = 1μHz in the solar case) .
Finally, the radiative damping is given by:

τ j,m(r; νs) = �
3/2
j,m(νs)

rc∫

r

K
N N 2

T

σ̃ 4

dr ′

r ′3 . (10.56)

As has been previously emphasized,� j,−m �= � j,m; the respective radiative damp-
ing associated to the Doppler-shift due to differential rotation is thus modified as
well as the deposition and extraction of angular momentum.
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Keeping the radial component of the momentum equation (10.3) and the energy
equation (10.5) and using once again the anelastic approximation, the monochromatic
Eulerian pressure fluctuation (P ′

j,m) is derived:

P ′
j,m(r, θ, ϕ, t) = − ρ

σ̃

kV ; j,m

(
N 2

σ̃ 2

)
E j,m(r)sin[φ j,m(r, ϕ, t)]

×� j,m(cos θ; νs)exp[−τ j,m(r; νs)/2].
(10.57)

Finally, following [26] , we define a horizontal wave number given by:

kH ; j,m = �̃
1/2
j,m (νs)

r
where �̃2

j,m (νs) = 〈|r2∇2
H� j,m (cos θ; νs) |2〉θ

〈|� j,m (cos θ, νs) |2〉θ , (10.58)

where ∇2
H is the horizontal spherical laplacian. In the absence of rotation, we recover

�̃ j,m (νs) = � j,m (νs) = l (l + 1) .
When the Coriolis acceleration is taken into account in a rotating stably stratified

radiative region, low-frequency IGWs are thus modified and become gravito-inertial
waves. Under the Traditional and the “weak differential rotation” approximations,
four types of gravito-inertial waves may be identified [55–57]:

• Class I waves: they are internal gravity waves, which exist in the non-rotating
case, that are modified by the Coriolis acceleration; rotation increases their eigen-
values (� j,m), and hence their radial wave number and their damping (cf. Fig.
10.10). These waves are thus deposited closer to their excitation region than when
the Coriolis acceleration is ignored. They can be treated using the Traditional
Approximation as long as their frequencies are super-inertial (σ > 2�s, νs < 1).

• Class I I waves: they are purely retrograde waves (m > 0), which exist only in
the case of rapid rotation. Their dynamics is driven by the conservation of specific
vorticity combined with the effects of curvature. However, due to their sub-inertial
frequency range (σ ≤ 2�s, νs ≥ 1), they can not be treated using the Traditional
Approximation. They are sometimes called “quasi-inertial” waves that corresponds
to the geophysical Rossby waves (cf. [58]).

• Class I I I waves: they are mixed class I and class I I waves. m ≤ 0 waves
exist in the absence of rotation. m > 0 appear when νs = m + 1 with small
eigenvalues while their horizontal eigenfunctions are � j,m (νs = m + 1; x) =
Pm

m+1 (x) . When they appear and have small eigenvalues, they behave mostly
like class I I waves; m ≤ 0 and m > 0 waves with large eigenvalues behave rather
like class I waves. Their eigenvalues are much smaller than those of class I waves.
Thus, they will be damped farther from the excitation region and over a more larger
portion of the stellar radiative region. As for class I waves, they can be treated
using the Traditional Approximation as long as their frequencies are super-inertial.
They may be identified with the geophysical Yanai waves [59].

• Class I V waves: they are purely prograde waves (m < 0) whose characteristics
change little with rotation, their displacement in the θ direction being very small.
Like class I I waves, their dynamics is driven by the conservation of specific
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vorticity, but here it is combined with the stratification effects; their eigenvalues
are smaller than those of both class I and class I I I waves. Hence, they are damped
somewhat deeper in the stellar radiation zone where they deposit their positive
angular momentum. As for class I and class I I I waves, they can be treated using
the Traditional Approximation as long as their frequencies are super-inertial. They
may be indentified with the geophysical Kelvin waves.

If we define a new index s by

s = �− m + 1 for m > 0 or s = �+ m − 1 for m ≤ 0. (10.59)

Class I V waves have s = −1, class I I I waves, s = 0, and class I waves have
s = 1, 2, 3, . . .

In the presence of the Coriolis acceleration, the spatial structure and damping of
the low-frequency IGWs are thus modified. We shall now study the mean energy and
angular momentum transported by these waves in the “weak differential rotation”
case.

10.4.3 Angular Momentum Transport in the “Weak Differential
Rotation” Case

First, we consider the mean flux of kinetic energy associated with a monochromatic
wave. Following [26] , it can be expressed as the product of the mean volumic density
of kinetic energy of the wave on an isobar and of its vertical group velocity:

〈FK
V ; j,m〉θ (r) = 1

2
〈FE

V ; j,m〉θ (r) = 1

2
ρ < u2

j,m >θ,ϕ V V
g; j,m . (10.60)

The group velocity is derived from (10.47):

V V
g; j,m = dσ̃

dkV ; j,m
= − σ̃

kV ; j,m
= −V V

p; j,m, (10.61)

where 〈u2
j,m〉θ,ϕ is the mean value of the squared velocity on an isobar

〈u2
j,m〉θ,ϕ = 1

4π

∫
�=4π

(
u2

r; j,m + u2
θ; j,m + u2

ϕ; j,m

)
d�, (10.62)

∫
�=4π · · · d� = ∫ 2π

0

∫ π
0 · · · sin θdθdϕ being the horizontal average over colatitudes

(θ ) and longitudes (ϕ), and V V
p; j,m is the phase velocity. Using the final expression

of the wave velocity field given in (10.42, 10.45), we finally find the following
expressions as in [22, 23]:
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〈FK
V ; j,m〉θ = − 1

2
ρ

E j,m2 (r)

2

(
〈�2

j,m (cos θ; νs)〉θ + r2k2
V ; j,m

�2
j,m (νs)

JH ; j,m (νs)

)

× σ̃ 2

N

1

kH ; j,m
exp

[−τ j,m (r; νs)
]
,

(10.63)
where

JH ; j,m (νs) =
〈[

Hθ
j,m (cos θ; νs)

]2
〉
θ

+
〈[

Hϕ
j,m (cos θ; νs)

]2
〉
θ

. (10.64)

Next, using (10.25), we obtain for the mean vertical angular momentum flux:

〈
FAM

V ; j,m

〉
θ
(r) =1

2
ρr

rkV ; j,m

� j,m (νs)
E2

j,m (r)
[
JI; j,m (νs)− νsJII; j,m (νs)

]

× exp
[−τ j,m (r; νs)

]
,

(10.65)

where the angular integrals JI; j,m (νs) and JII; j,m (νs) are given by:

⎧⎨
⎩

JI; j,m (νs) =
〈
� j,m (cos θ; νs)Hϕ

j,m (cos θ; νs) sin θ
〉
θ

JII j,m (νs) =
〈
� j,m (cos θ; νs)Hθ

j,m (cos θ; νs) cos θ sin θ
〉
θ

(10.66)

Then, using the approximation r2kV ; j,m � � j,m, we derive the relation between
FAM

V ; j,m and FK
V ; j,m :

〈
FAM

V ; j,m

〉
θ
(r) = −2

m′ (νs)

σ̃
〈FK

V ; j,m〉θ (r) , (10.67)

where m′ is given by:

m′ (νs) = � j,m (νs)
JI; j,m (νs)− νsJII; j,m (νs)

JH ; j,m (νs)
. (10.68)

This relation links the mean flux of angular momentum carried by a monochromatic
wave on an isobar to that of the kinetic energy as in (10.26). In the non-rotating case,
we retrieve m′ (νs = 0) = m.

In the case of class I gravito-inertial waves, m′ (νs) is decreased compared to
the non-rotating case. Heuristically, this is a consequence of the lesser horizontal
extent of the eigenfunctions. Hence, the ability of those waves to transport angular
momentum is decreased compared to the non-rotating case. However, we can see that
if the prograde and retrograde waves are equally excited, we should expect that the
damping of these waves could produce a Shear Layer Oscillation (SLO) similar to
the one obtained in the case where the Coriolis acceleration is not taken into account
(cf. [18]) . In the case of class I I I waves, we obtain the same behaviour, but with a
slower convergence rate. Finally, in the case of class I V waves, m′ (νs) varies only
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Fig. 10.11 Ratio m′ = − σ
2

FAM
V

FK
V

for various modes. Class I waves corresponding to � = 5, 6

(continuous lines) � = 3, 4 (dotted lines). Class I I I waves of order m = −5, . . . ,−1. Class I V
waves of order m ≥ −6 (taken from [89]; courtesy Solar Physics)

slightly with rotation and remains close to m, their angular momentum flux being
always positive so that they could induce a deposition of angular momentum where
they are damped.

The relation between the kinetic energy and the angular momentum mean vertical
fluxes being now established, the vertical action of angular momentum can be derived.
Applying (10.26) to the “weak differential rotation case” we finally get

〈LAM
V 〉θ (r) = r2〈FAM

V 〉θ
=

∫

σ

∑
m, j

{
LAM

V ; j,m (rc) exp
[−τ j,m

(
r, δ� (r) ; νs

)]}
dσ, (10.69)

where we identify

〈LAM
V ; j,m〉θ (rc) = −r2

c
2

σ̃
m′ (νs) 〈FK

V ; j,m〉θ (rc) , (10.70)

�s thus corresponding to the mean rotation rate at rc: �s = �(rc) . (Fig. 10.11).
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10.5 On the Track of the Excited Spectrum

The search of prescription for the excitation is one of the nowadays major unsolved
and debated question of the wave-induced transport theory. To achieve this aim,
different approaches have been adopted.

The first analytical one consists in deriving, using phenomenological prescritions,
the energy flux transmission between the turbulent convective movements and the
IGWs using the matching of the wave pressure fluctuation with that of the turbulent
convection. The Kolmogorov turbulent energy spectrum is assumed. This procedure
is described in details in [16, 26, 60] in the non-rotating case and by [23] in the one
where the Coriolis acceleration is taken into account.

The second semi-analytical approach consists in deriving, in the most consistent
way as possible, the wave amplitude with describing their stochastic volumetric
excitation by the convective Reynolds stresses and the turbulent entropy advection.
This method takes into account both the spatial and the temporal correlations between
turbulent eddies and waves. Formalisms follow the first work by [61] which was
devoted to solar p-modes and adapted to IGWs by [48] . Those first contributions
assumed the Kolmogorov energy spectrum. Those works were then generalized by
[62, 63] in order to take into account a general turbulent energy spectrum, which
can be extracted from realistic 3D numerical simulations of turbulent convection,
and by [64, 65] who derived a rigorous treatment of the excitation with accounting
for the non-radial character of the modes crucial in the case of IGWs for which the
displacement is mostly horizontal. Finally, the Coriolis acceleration is now taken into
account [24, 66] and the generalized formalism has now to be applied to gravito-
inertial waves.

Penetrative convection is also an efficient process to generate IGWs. This was first
investigated by [67, 68] in the case of atmospheric flows. Then, in the stellar context,
[69–71] , following [68] , used several models for wave excitation by plumes in order
to study the problem of light elements mixing induced by IGWs (see also the work
by [72, 73] for the case of convective cores). However, they considered that waves
are generated solely by turbulence inside plumes and they did not investigate the
generation of waves caused by the impact of plumes on the stably stratified region
that is now undertaken (cf. [66]).

The major approach to obtain prescription for the wave energy spectrum in this
case consists in computing numerical simulations of turbulent penetrative convec-
tion at the interface between convective and radiative regions. Such simulations have
shown IGWs excitation (see for example [74–80]) but specific work has to be under-
taken to provide a quantitative estimate of the amplitude and of the spectrum of
waves.

First work dedicated to such study has been completed in 2D Cartesian geometry
by [81] . In this work, the assumed stratification is polytropic and authors add a
viscous boundary layer at the bottom of the stable zone in order to avoid the reflexion
of excited waves and thus the appearance of normal modes in the simulation box.
Their main results are that phenomenological semi-analytical models (the Garcià-
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Lopez and Spruit’s one, hereafter GLS91, or the plume model by [82] , hereafter
RZ95) significantly underestimate the flux of IGWs by a factor 100 (GLS91) and
10 (RZ95) compared to 2D direct numerical simulations. On the other hand, in the
domain (σ, kH ) , the numerically obtained wave spectrum is much broader than
those predicted using GLS91 which results in lack of high frequency waves and
RZ95 where low frequencies are missing. However, authors emphasized that 2-D
simulations probably produce stronger downflows compared to more realistic 3-D
simulations. This is the reason why [83] revisited their own work comparing their
previous results with those obtained in 3-D Cartesian box using the same stratification
where downdrafts are significantly less vigorous. On one hand, the excited IGWs
have lower amplitude. On the other hand, the wave energy flux increases with the
depth of the convective layer.

In the same way, [84] proposed a quantitative investigation of the spectrum, the
amplitude and the life-time of IGWs excited by penetrative convection in solar-like
stars using 2-D numerical simulations of compressible convection assuming that
the gas is monoatomic and perfect. The wave generation is studied from the linear
response of the radiative zone to the plumes penetration using projections onto the
g-modes linear eigenfunctions. Authors show that up to 40% of the total kinetic
energy is transmitted to IGWs during times of significant excitation.

Finally, work is now undertaken to take into account realistic stratification, the
global geometry, and the (differential) rotation. In this way, [85, 86] computed inte-
grated models of the Sun interior (both the convective envelope and the radiative
core) in 2-D polar geometry that represents the equatorial plane of the Sun using
a realistic stratification given by a solar model. As in the work by [81] , the found
frequency spectrum is broader than those determined using semi-analytical models
with a more uniform distribution between low and high frequencies. On the other
hand, it is shown that non-linear effects have to be taken into account. These effects
broaden the frequency ridges in the dispersion relation.

Furthermore, just under the convection zone, the energy is increased by two orders
of magnitude over what the linear dispersion relation would predict for energy in
waves. Progresses on such type of numerical simulations is now under progress in
3-D spherical geometry with using the Anelastic Spherical Harmonics code (see [78,
87] for the code description and A.-S. Brun, 2009, private communication).

Therefore, all those possible sources of prescription for the wave excited spec-
trum have to be carefully examined given its uncertainty; this will be studied in the
application of our formalism.

10.6 Conclusion

In this lecture, a complete formalism to treat the dynamics of regular (elliptic)
low-frequency gravito-inertial waves in stably strongly stratified differentially rotat-
ing stellar radiation zones, from tachocline(s) where they are excited to their bulk,
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has been presented. Then, the feedback on the angular velocity profile through the
induced-angular momentum transport has been established.

The Traditional Approximation has been used to treat the impact of the Coriolis
acceleration on IGWs in its domain of validity. Two main effects are observed:
first, the horizontal structure of waves is modified, their dynamics being now driven
simultaneously by the stratification, as in the non-rotating case, and by the Coriolis
acceleration. Hence, the amount of angular momentum carried by a wave and its
damping are modified. In the simplified case of the “weak differential rotation case”
a classification of regular gravito-inertial waves has been established. In the case
of class I gravito-inertial waves, the main effect of the Coriolis acceleration is to
modify the horizontal functions, the prograde and the retrograde waves being now
different. Furthermore, a reduction of the effectiveness of these waves in transporting
angular momentum is obtained. Furthermore, rotation increases their damping, these
waves being thus deposited closer to their excitation region than gravity waves in the
non-rotating case. The class I I I waves have the same behaviour for m′ but with a
slower convergence rate. Their eigenvalues are however quite smaller and hence they
are damped farther from the convection zone border. Finally, class I V waves have
a different behaviour. For these waves the main restoring force is the conservation
of vorticity combined with stratification. They have m′ = m and their eigenvalues
are smaller than those of both class I and class I I I waves. Hence, they are damped
deeper in the core in the case of solar-like stars and nearer the stellar surface in
massive stars where they deposit their positive angular momentum.

Complete numerical simulations remain to be performed to verify and understand
the net effects of all those gravito-inertial waves on the angular momentum transport
in stellar interiors. Furthermore, the hyperbolic regime (sub-inertial in the case of
a uniform rotation), which has to be treated taking into account the complete Cori-
olis acceleration, has to be examined to get a global picture of the gravito-inertial
wave transport. In parallel, works must be devoted to its implementation in existing
dynamical stellar evolution codes and to its application to different type of stars and
evolution stages. This effort will lead to the building of more and more realistic stel-
lar models, which will benefit from new constraints provided by the development of
asteroseismology both on the ground and in space.
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Chapter 11
Stochastic Excitation of Acoustic Modes in Stars

R. Samadi

Abstract For more than ten years, solar-like oscillations have been detected and
frequencies measured for a growing number of stars with various characteristics (e.g.
different evolutionary stages, effective temperatures, gravities, metal abundances...).
Excitation of such oscillations is attributed to turbulent convection and takes place in
the uppermost part of the convective envelope. Since the pioneering work of Goldre-
ich and Keeley (APJ, 211:934, 1977; 212:243, 1977) more sophisticated theoretical
models of stochastic excitation were developed, which differ from each other both
by the way turbulent convection is modeled and by the assumed sources of exci-
tation. We review here these different models and their underlying approximations
and assumptions. We emphasize how the computed mode excitation rates crucially
depend on the way turbulent convection is described but also on the stratification
and the metal abundance of the upper layers of the star. In turn we will show how
the seismic measurements collected so far allow us to infer properties of turbulent
convection in stars.

11.1 Introduction

Solar p-modes are known to have finite lifetimes (a few days) and very low amplitudes
(a few cm/s in velocity and a few ppm in intensity). Their finite lifetimes result from
several complex damping processes that are so far not clearly understood. Their
excitation is attributed to turbulent convection and takes place in the upper-most part
of the Sun, which is the place of vigorous and turbulent motions. Since the pioneering
work of Lighthill [1], we know that a turbulent medium generates incoherent acoustic
pressure fluctuations (also called acoustic “noise”). A very small fraction of the
associated kinetic energy goes into to the normal modes of the solar cavity. This
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small amount of energy then is responsible for the small observed amplitudes of the
solar acoustic modes (p modes).

In the last decade, solar-like oscillations have been detected in numerous stars,
in different evolutionary stages and with different metallicity (see recent review
by Bedding and Kjeldsen [2]). As in the Sun, these oscillations have rather small
amplitudes and have finite lifetimes. The excitation of such solar-like oscillations is
attributed to turbulent convection and takes place in the outer layers of stars having
a convective envelope.

Measuring mode amplitudes and the mode lifetimes permits us to infer P, the
energy supplied per unit time into the acoustic modes. Deriving P puts constraints
on the theoretical models of mode excitation by turbulent convection [3]. However,
as pointed-out by Baudin et al. [4], even for the Sun, inferring P from the seismic
data is not a trivial task. For stellar seismic data, this is even more difficult [5]. We
discuss here the problems we face in deriving reliable seismic constraints on P.

A first attempt to explain the observed solar five minute oscillations was carried
out by Unno and Kato [6]. They have considered monopole1 and dipole2 source
terms that arise from an isothermal stratified atmosphere. Stein [7] has generalised
Lighthill [1]’s approach to a stratified atmosphere. He found that monopole source
terms have a negligible contribution to the noise generation compared to the quadru-
pole source term.3 Among the quadrupole source terms, the Reynolds stress was
expected to be the major source of acoustic wave generation. It was only at the
beginning of the 1970s that solar five minutes oscillations have been clearly identi-
fied as global resonant modes [8–10]. A few years later, Goldreich and Keeley [11]
have proposed the first theoretical model of stochastic excitation of acoustic modes
by the Reynolds stress. Since this pioneering work, different improved models have
been developed [12–19]. These approaches differ from each other either in the way
turbulent convection is described or by the excitation process.

In the present paper, we briefly review the different main formulations and discuss
the main assumptions and approximations on which these models are based. As
shown by Samadi et al. [17], the energy supplied per time unit to the modes by
turbulent convection crucially depends on the way eddies are temporally correlated.
A realistic modeling of the eddy time-correlation at various scale lengths then is an
important issue, which is discussed in detail here. We will also highlight how the mean
structure and the chemical composition of the upper convective envelope influence the
mode driving. Finally, we will summarize how the seismic measurements obtained so
far from the ground allow us to distinguish between different dynamical descriptions
of turbulent convection.

1 A monopole term is associated with a fluctuation of density.
2 A dipole term is associated with a fluctuation of a force.
3 A quadrupole term is associated with a shear.
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11.2 Mode Energy

We will show below how the energy of a solar-like oscillation is related to the driving
and damping process. The mode total energy (potential plus kinetic) is by definition
the quantity:

Eosc(t) =
∫

d3xρ0v
2
osc(r, t) (11.1)

where vosc is the mode velocity at the position x, and ρ0 the mean density.
Mode damping occurs over a time-scale much longer than that associated with

the driving. Accordingly, damping and driving can be completely decoupled in time.
Furthermore, we assume a constant and linear damping such that

dvosc(t)

dt
= −ηvosc(t) (11.2)

where η is the (constant) damping rate. The time derivative in (11.2) is performed
over a time scale much larger than the characteristic time over which the driving
occurs.

Let P be the amount of energy injected per unit time into a mode by an arbitrary
source of driving (which acts over a time scale much shorter than 1/η). According
to (11.1) and (11.2), the variation of Eosc with time is given by:

d Eosc

dt
(t) = P − 2 ηEosc(t). (11.3)

Solar-like oscillations are known to be stable modes. As a consequence, their energy
cannot growth on a time scale much longer than the time scales associated with the
damping and driving process. Accordingly, averaging (11.3) over a long time scale
gives:

d Eosc

dt
(t) = 0, (11.4)

where () refer to a time average. From (11.3) and (11.4), we immediately derive:

Eosc = P
2η.

(11.5)

We then clearly see with (11.5) that a stable mode has its energy (and thus its ampli-
tude) controlled by the balance between the driving (P) and the damping (η). Then,
the major difficulties are to model the processes that are at the origin of the driving
and the damping. For ease of notation, we will drop from now on the symbol () from
Eosc and P.
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11.3 Seismic Constraints

As we shall see later, the mode displacement, δrosc, can be written in terms of the
adiabatic eigen-displacement ξ , and an instantaneous amplitude A(t):

δrosc ≡ 1

2

(
A(t)ξ(r)e−iωosct + cc

)
(11.6)

where cc means complex conjugate, ωosc is the mode eigenfrequency, and A(t) is
the instantaneous amplitude resulting from both the driving and the damping. Note
that, since the normalization of ξ is arbitrary, the actual intrinsic mode amplitude
is fixed by the term A(t), which remains to be determined. The mode velocity, vosc,

is then given by:

vosc(r, t) = dδrosc

dt
= 1

2
(−iωosc A(t)ξ(r)e−iωosct + cc) (11.7)

where cc means complex conjugate. Note that we have neglected in (11.7) the time
derivative of A. This is justified since the mode period (2π/ωosc) is in general much
shorter than the mode lifetime (∼1/η)

From (11.7) and (11.1), we derive the expression for the mean mode energy:

Eosc =
∫

d3xρ0v2
osc = 1

2
| A |2 Iωosc

2, (11.8)

where

I ≡
M∫

0

d3xρ0ξ
∗ · ξ (11.9)

is the mode inertia. For the sake of simplicity, we will from now on only consider
radial modes. According to (11.7), the mean-square surface velocity associated with
a radial mode measured at the radius rh, is then given by the relation

v2
s (rh) = 1

2
| A |2ω2

osc | ξr(rh) |2 (11.10)

where ξr is the radial component of the mode eigenfunction. It is convenient and
common to define the mode mass as the quantity:

M(rh) ≡ I

| ξr(rh) |2 (11.11)

where rh is the radius in the atmosphere where the mode is measured in velocity.
According to (11.8),(11.10), and (11.11), we derive the following relation:

Eosc = Mv2
s (11.12)
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It should be noticed, that although M and vs depend on the choice for the radius
rh, Eosc is by definition intrinsic to the mode (see 11.1) and hence is independent
of rh .

Using (11.5), and (11.12), we finally derive:

v2
s (rh, ωosc) = P

2πM�
(11.13)

where � = η/π is the mode linewidth, and η the mode damping rate. From (11.13),
one again sees that the mode surface velocity is the result of the balance between
excitation (P) and the damping (η = �π ). However, it also depends on the mode
mass (M): For a given driving (P) and damping (�), the larger the mode mass (or
the mode inertia), the smaller the mode velocity.
When the frequency resolution and the signal-to-noise are high enough, it is possible
to resolve the mode profile and then to measure both � and the mode height H in
the power spectral density (generally given in m2/Hz). In that case vs is given by the
relation (see e.g. [4]):

v2
s (rh, ωosc) = πCobs H� (11.14)

where the constant Cobs takes the observational technique and geometrical effects into
account (see [4]). From (11.13) and (11.14), one can then infer from the observations
the mode excitation rates (P) as:

P(ω) = 2πM�v2
s = 2π2MCobs H�2 (11.15)

Provided that we can measure � and H, it is then possible to constraint P.However,
we point out that the derivation of P from the observations is also based on models
since M is required. Furthermore, there is a strong anti-correlation between H and�
(see e.g. [20], [21]) that can introduce important bias. This anti-correlation vanishes
when considering the squared mode amplitude, v2

s , since v2
s ∝ H� (see 11.14).

However, P still depends on �, which is strongly anti-correlated with H.
As an alternative to comparing theoretical results and observational data, Chaplin

et al. [16] proposed to derive H from the theoretical excitation rates, P, and the
observed mode line width, �, according to the relation:

H = P
2π2MCobs�2 (11.16)

However, as pointed-out by Belkacem et al. [18], H strongly depends on the obser-
vation technique. The quantity Cobs H, is less dependent on the observational data
but still depends on the instrument since different instruments probe different layers
of the atmosphere (see below). Therefore, one has difficulty to compare values of
HCobs coming from different instruments.
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11.3.1 Solar Seismic Constraints

Baudin et al. [4] have inferred the solar p-mode excitation rates from different instru-
ments, namely GOLF on-board SOHO, the BiSON and GONG networks. As pointed
out by Baudin et al. [4], the layer (rh) where the mode mass is evaluated must be
properly estimated to derive correct values of the excitation rates from (11.15). In-
deed solar seismic observations in Doppler velocity are usually measured from a
given spectral line. The layer where the oscillations are measured then depends on
the height (rh) in the atmosphere where the line is formed. Different instruments use
different solar lines and then probe different regions of the atmosphere. For instance,
the BiSON instruments use the KI line whose height of formation is estimated at
the optical depth τ ≈ 0.013. The optical depth associated with the different spectral
lines used in helioseismology are given in Houdek [22] with associated references.

Solar p-mode excitation rates, P, derived by Baudin et al. [4] are shown in
Fig. 11.1 (left panel). For ν � 3.2 mHz PGONG and PBiSON are consistent with each
other, whereas PGOLF is systematically smaller than PGONG and PBiSON, although
the discrepancy remains within 1-σ. At high frequency, differences between the
different data sets are more important. This can be partially attributed to the choice
of the layers rh where M are evaluated. Indeed, the sensitivity of M to rh is the
larger at high frequency. On the other hand, low-frequency mode masses are much
less sensitive to the choice of rh .Accordingly, the discrepancy seen at low frequency
between GOLF and the other data sets suggests that the absolute calibration of the
GOLF data may not be correct (see [4]). In Fig. 11.1, we then present P derived
from GOLF data after multiplying them by a factor in order that they match at low
frequency PGONG and PBiSON. We find a rather good agreement between PGOLF and
PBiSON whereas, at high frequency, PGONG are systematically lower than PGOLF

ore PBiSON. The residual high-frequency discrepancy is likely due to an incorrect
determination of the layer rh where the different seismic measurements originate
(see a detailled discussion in Baudin et al. [4]).

11.3.2 Stellar Seismic Constraints

Seismic observations in Doppler velocity of solar-like pulsators are performed us-
ing spectrographs dedicated to stellar seismic measurements (e.g. UCLES, UVES,
HARPS). Such spectrographs use a large number of spectral lines in order to reach
a high enough signal-to-noise ratio. In the case of stellar seismic measurements, it is
then more difficult than for helioseismic observations to estimate the effective height
rh .As discussed in detail in Samadi et al. [5], the computed mode surface velocities,
vs, depend significantly on the choice of the height, h, in the atmosphere where the
mode masses are evaluated. This is illustrated in Fig. 11.2 for the case of the star α
Cen A.
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Fig. 11.1 Left: Solar p-mode excitation rates, P, as a function frequency and derived from different
instruments. The filled circles correspond to seismic data from SOHO /GOLF, the diamonds to
seismic data from the BiSon network, and the triangles to seismic data from the GONG network.
Right: Same as left panel. P derived from GOLF data multiplied by a factor in order that they match
at low frequency the P derived from GONG or BiSON

Fig. 11.2 Mode mass
evaluated for the case of α
Cen A at different heights h
above the photosphere. The
upper curve corresponds to
the photosphere (h = 0)
and the lower curve to the
top of the atmosphere (h =
1000 km). The step in h is
200 km

A recent work by Kjeldsen et al. [23] allows us to estimate the value for an effective
rh . Indeed, the authors have found that solar modes measured with the UCLES
spectrograph have amplitudes slightly smaller than those measured by the BiSON
network. The instruments of the BiSON network use the potassium (K) resonance
line, which is formed at an optical depth τ500 nm � 0.013.Kjeldsen et al. [23]’s results
then suggest that acoustic modes measured by UCLES or an equivalent spectrograph
(e.g. HARPS) are measured at an effective height (rh) slightly below the formation
depth of the K line, i.e. at optical depth slightly above τ500 nm � 0.013.Accordingly,
in the case of stellar seismic observations we will evaluated the mode masses at that
optical depth. A more rigorous approach would be to compute an effective mode mass
by weighting appropriately the different mode masses associated with the different
spectral lines that contribute to the seismic measure. In order to infer accurate mode
excitation rates from the stellar seismic data, the mode masses representative of the
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observation technique and the spectral lines of the observed star must be derived.
However, this calls for further studies.

11.4 Theoretical Models

11.4.1 The Inhomogeneous Wave Equation

Most of the theoretical models of stochastic excitation adopt GK’s approach. It
consists to solve first, with appropriate boundary conditions, the equation that governs
the adiabatic wave propagation (also called the homogeneous wave equation). This
provides the well-known adiabatic displacement eigenvectors (ξ(r, t)). Then, we
include in the wave equation of propagation turbulent sources of driving as well as a
linear damping. The complete equation (so-called inhomogeneous wave equation) is
then solved and the solution corresponds to the forced mode displacement, δrosc(r, t)
(or equivalently the oscillation mode velocity vosc = dδrosc/dt).

A detailed derivation of the solution can be found in Samadi and Goupil [15] or
in Chaplin et al. [16]. We recall below the main steps.

Equilibrium quantities are represented with a subscript 0. Each variable f, except
for the velocity v, is written as the sum of the equilibrium quantity, f0 and an Eulerian
fluctuation, f1, f = f0 + f1 and we retain terms which are linear and quadratic in
the variables P1 and ρ1 and neglect, g1, the gravitational perturbation.4 Accordingly,
one obtains for the perturbed momentum and continuity equations:

∂ρv

∂t
+ ∇ : (ρvv)+ ∇P1 − ρ1g0 = 0 (11.17)

∂ρ1

∂t
+ ∇ · (ρv) = 0 (11.18)

where ωosc is the mode frequency, P, ρ, v and g denote respectively the gas
pressure, density, velocity and gravity.

The perturbed equation of state to second order in a Eulerian description is given
by:

P1 = c2
sρ1 + αss1 + αρρρ

2
1 + αsss2

1 + αρsρ1s1 (11.19)

where s is the entropy, αs = (∂P/∂s)ρ, cs = �1 P0/ρ0 denotes the average sound
speed, �1 = (∂ ln P/∂ ln ρ)s is the adiabatic exponent and αρρ, αss and αρs are the
second partial derivatives of P versus s and ρ. Note that (11.19) assumes a constant
chemical composition (this is indeed the case in the outer convective layers) but also
constant ionisation rates.

4 Neglecting the perturbation of the gravity corresponds to Cowling [24]’s approximation. This
approximation remains valid for modes with a high n radial order.
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The velocity field v is split into a component due to the pulsational displacement
δrosc and a turbulent component u as

v = vosc + u (11.20)

Linearisation of (11.17–11.19) yields for the velocity field, in the absence of turbu-
lence (u = 0), the homogeneous wave equation

(
∂2

∂t2 − L
)

vosc = 0 (11.21)

where L is the linear wave operator (see its expression in SG). With appropriate
boundary conditions [25] one recovers the usual eigenvalue problem:

L(ξ(r, t)) = −ω2
oscξ(r, t) (11.22)

where ωosc is the mode eigenfrequency and ξ(r, t) ≡ e−iωosctξ(r) is the adiabatic
displacement eigenvector.

In the presence of turbulence, the pulsational displacement (δrosc) is written in
terms of the above adiabatic solution ξ(r, t) and an instantaneous amplitude A(t)
according to (11.6). Under the assumption of a slowly varying intrinsic amplitude
A(t), the velocity (vosc) is related to A(t) and δrosc according to (11.7).

Differentiating (11.17) with respect to t, subtracting the time averaged equation of
motion, neglecting non-linear terms in vosc, assuming an incompressible turbulence
(∇ · u = 0) and using (11.18) and (11.19) yields the inhomogeneous wave equation

ρ0

(
∂2

∂t2 − L
)

[vosc] + D [vosc] = ∂

∂t
S − C (11.23)

with

S ≡ SR + SS (11.24)

SR = ∇ : (ρ0 uu)− ∇ : (〈ρ0uu〉) (11.25)

SS = −∇ (ᾱsst ) (11.26)

where st is the Eulerian turbulent entropy fluctuations and αs = (∂P/∂ρ)s . The
terms SR (11.25) and SS (11.26) are two driving sources, namely the Reynolds stress
tensor and a term that involves the Eulerian entropy fluctuations. The last term C in
the RHS of (11.23) gathers terms that involve ρ1 as well as the second order terms
of (11.19). C can in principle contribute to the driving. However, one can show that
its contribution is negligible compared to SR and SS (see SG, GK).

The operator D in the LHS of (11.23) involves both the turbulent velocity field (u)
and the pulsational velocity. This term contributes to the dynamical linear damping.
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As we will see later, it is more convenient to decompose the Eulerian entropy
fluctuations in terms of the Lagrangian ones, that is as:

∂st

∂t
= dδst

dt
− u · ∇(s0 + st ) (11.27)

where s0 is the mean entropy. Accordingly, SS is such that:

∂SS

∂t
= −∇

(
d

dt
(ᾱsδst )− ᾱs u · ∇st

)
(11.28)

where we have dropped the term u · ∇s0 since it does not contribute to the driving
(GK, see also SG). Integration of (11.28) with respect to time then gives SS .

11.4.2 General Solution

Substituting (11.7) into (11.23), yields, with the help of (11.21), a differential equa-
tion for A(t). This latter equation is straightforwardly solved and one obtains the
solution for A:

A(t) = ie−ηt

2ωosc I

t∫

−∞
dt ′

∫

V
d3xe(η+iωosc)t ′ξ∗(x) · S(x, t ′) (11.29)

where I is the mode inertia (which expression is given in (11.9)) and the spatial
integration is performed over the stellar volume, V. As the sources are random, A
can only be calculated in square average, 〈|A|2〉. This statistical average is performed
over a large set of realizations. From (11.29) and with the help of some simplifications
as detailed in SG, one finds:

〈
|A|2

〉
= C2

8η(ωosc I )2
(11.30)

with

C2 ≡
∫

V
d3x0

+∞∫

−∞
d3rdτe−iωoscτ

〈
ξ∗ · S1ξ · S2

〉
(11.31)

where η is the mode damping rate (which can be derived from seismic data),
I the mode inertia (11.9), x0 the position in the star where the stochastic excita-
tion is integrated, V is the volume of the convective region, S represents the different
driving terms, r, and τ are the spatial correlation and temporal correlation lengths
associated with the local turbulence, subscripts 1 and 2 refer to quantities that are
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evaluated at the spatial and temporal positions [x0 − r
2 ,− τ

2 ] and [x0 + r
2 ,

τ
2 ] respec-

tively, and finally 〈·〉 refers to a statistical average.
According to (11.5), (11.8) and (11.30), the theoretical mode excitation rate, P,

is then given by the expression:

P = C2

8I
(11.32)

11.4.3 Driving Sources

The Reynolds stress tensor (11.25) was identified early on by Lighthill [1] as a
source of acoustic noise and then as a source of mode excitation (GK). This term
represents a mechanical source of driving and is considered by most of the theoretical
formulations as the dominant contribution to the mode excitation [11–13, 16, 17, 26].
However, as pointedout by Osaki [27], the first calculations by GK’s significantly
under-estimate the power going to the solar modes compared to the observations.

In order to explain the mode excitation rates derived from the observations, Gol-
dreich et al. [14] identified the Lagrangian entropy fluctuations, i.e. the term δst in
(11.28), as an additional driving source. These authors claimed that this term is the
dominant source of driving. However, GMK assumed that entropy fluctuations (st )
behave as a passive scalar. A passive scalar f is a quantity that obeys an equation of
diffusion (see e.g. [28]):

d f

dt
= ∂ f

∂t
+ u · ∇ f = χ∇2 f (11.33)

where χ is a diffusion coefficient. As shown by SG, assuming as GMK that δst is a
passive scalar leads to a vanishing contribution. On the other hand, SG have shown
that the term ᾱs u · ∇st in the RHS of (11.28) contributes effectively to the mode
driving. In SG formulation, the so-called entropy source term is then:

∂

∂t
SS = ∇ (ᾱs u · ∇st ) (11.34)

The term u · ∇st in the RHS of (11.34) is an advective term. Since it involves the
entropy fluctuations it can be considered as a thermal source of driving. The source
term of (11.34) was also identified by GK, but was considered as negligible. It must
also be pointed out that the theoretical formalisms by Balmforth [13] and Chaplin et
al. [16] did not consider this source term. According to Samadi et al. [17], this term
is not negligible (about ∼15% of the total power) but nevertheless small compared
to the Reynolds stress source term (SR) in the case of the Sun.

Finally, as seen in (11.31), SR and SS lead to cross terms. However, assuming
as GMK that st behaves as a passive scalar and an incompressible turbulence
(i.e. ∇ · u = 0), SG have shown that the crossing term between SR and SS vanishes.
Hence, in the framework of those assumptions, there is no canceling between the
two contributions (but see Sect. 11.8).
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11.4.4 Length Scale Separation

As seen in the RHS of (11.31), the eigen-displacement ξ(r) is coupled spatially
with the source function, S. In order to derive a theoretical formulation that can be
evaluated, it is necessary to spatially decouple ξ(r) from S.This is the reason why all
theoretical formulations explicitly or implicitly assume that eddies that effectively
contribute to the driving have a characteristic length scale smaller than the mode
wavelength. Indeed, provided this is the case, ξ(r) can be removed from the integral
over r and τ that appears in the RHS of (11.30) (see SG). This assumption is justified
for low turbulent Mach numbers Mt (Mt ∝ u/cs where cs is the sound speed).
However, at the top of the solar convective zone, that is in the super-adiabatic region,
Mt is no longer small (Mt ∼ 0.3). Furthermore, for G and F stars lying on the
main sequence, Mt is expected to increase with the effective temperature and to
reach a maximum for M ∼ 1.6 M (see Houdek et al. [29]). Hence, for F type
stars, significantly hotter than the Sun, the length scale separation becomes a more
questionable approximation (see the discussion in Sect. 11.11).

11.4.5 Closure Models

The second integral in RHS of (11.30) involves the term 〈S1S2〉 , which is a two-
point spatial and temporal correlation products of the source terms. Hence, the
Reynolds stress source term (11.25) leads to the two-point correlation product of
the form 〈(uu)1(uu)2〉. In the same way, the entropy source term (11.34) leads to
the two-point correlation product of the form 〈(ust )1(ust )2〉. In both case, we deal
with fourth-order two-point correlation product involving turbulent quantities (that
is u and st ). Fourth-order moments are solutions of equations involving fifth-order
moments. In turn, fifth-order moments are expressed in term of six-order moments. . .
and so on. This is the well known closure problem. A simple closure model is the
quasi-normal approximation (QNA hereafter) that permits one to express fourth order
moments in term of second order ones (see details in e.g. [28]), that is:

〈(ui u j )1(ukul)2〉(r, τ ) =〈(ui u j )1〉〈(ukul)2〉 + 〈(ui )1(ul)2〉〈(u j )1(uk)2〉
+ 〈(ui )1(uk)2〉〈(u j )1(ul)2〉 (11.35)

The decomposition of (11.35) is strictly valid when the velocity is normally dis-
tributed. The first term in the RHS of (11.35) cancels the term 〈uu〉 in (11.25) (see
details in Chaplin et al. [16]). An expression similar to (11.35) is derived for the
correlation product 〈(ust )1(ust )2〉 (see SG).
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11.4.6 Adopted Model of Turbulence

It is usually more convenient to express (11.35) in the frequency (ω) and wavenum-
ber (k) domains. We then define φi, j as the temporal and spatial Fourier transform of
〈(ui )1(u j )2〉. For an inhomogeneous, incompressible, isotropic and stationary tur-
bulence, there is a relation between φi, j and the kinetic energy spectrum E, which is
[30]:

φi j (k, ω) = E(k, ω)

4πk2

(
δi j − ki k j

k2

)
(11.36)

where k and ω are the wavenumber and frequency respectively associated with the
turbulent elements, and δi, j is the Kronecker symbol. Following Stein [7], it is pos-
sible to split for each layers E(k, ω) as:

E(k, ω) = E(k)χk(ω) (11.37)

where E(k) is the time averaged kinetic energy spectrum and χk(ω) is the frequency
component of E(k, ω). In other words, χk(ω) measures—in the frequency and k
wavenumber domains—the temporal correlation between eddies. As discussed in
Sect. 11.2), the way the eddy time-correlation is modeled has an important con-
sequence on the efficiency of the mode driving. A decomposition similar to that
of (11.37) is performed for the spectrum associated with the entropy fluctuations
(Es(k, ω)).

Note that χk(ω) and E(k) satisfy by definition the following normalisation con-
ditions:

+∞∫

−∞
dωχk(ω) = 1 (11.38)

∞∫

0

dk E(k) = 1

2
〈u2〉 = �

2
〈u2

z 〉 ≡ 3

2
u2

0, (11.39)

where uz is the vertical component of the velocity, � ≡ 〈u2〉/〈u2
z 〉 is the anisotropy

factor introduced by Gough [31], and u0 is a characteristic velocity introduced for
convenience. A normalisation condition similar to (11.39) is introduced for Es(k)
(see details in SG).

11.4.7 Complete Formulation

On the basis of the different assumptions mentioned above, SG then derive for radial
modes the following theoretical expression for P :
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P = 1

8I

(
C2

R + C2
S

)
(11.40)

where C2
R and C2

S are the turbulent Reynolds stress and entropy contributions re-
spectively. There expressions are (see SG):

C2
R = 4π3G

M∫

0

dmρ0

∣∣∣∣dξr

dr

∣∣∣∣
2

SR(m, ωosc) (11.41)

C2
S = 4π3H

ω2
osc

M∫

0

dm
ᾱ2

s

ρ0
gr(ξr,m)SS(m, ωosc) (11.42)

with SR and SS are the source terms associated with the Reynolds stress and entropy
fluctuations respectively:

SR =
∞∫

0

dk
E2(k,m)

k2

+∞∫

−∞
dωχk(ωosc + ω,m)χk(ω,m) (11.43)

SS =
∞∫

0

dk
Es(k,m)E(k,m)

k2

+∞∫

−∞
dωχk(ωosc + ω,m)χk(ω,m) (11.44)

In (11.41) and (11.42), ρ0 is the mean density, G and H are two anisotropic factors
(see their expressions in SG), and finally gr(ξr,m) is a function that involves the first
and the second derivatives of ξr , its expression is:

gr(ξr,m) =
(

1

αs

dαs

dr

dξr
dr

− d2ξr

dr2

)2

(11.45)

It is in general more convenient to rewrite (11.41) and (11.42) in the following
forms:

C2
R = 4π3G

M∫

0

dm
ρ0 u4

0

k3
0 ω0

∣∣∣∣dξr

dr

∣∣∣∣
2

S̃R(m, ωosc) (11.46)

C2
S = 4π3H

ω2
osc

M∫

0

dm
(ᾱs s̃u0)

2

ρ0 k3
0ω0

gr(ξr,m)S̃s(m, ωosc) (11.47)

where we have defined the dimensionless source functions S̃R ≡ (
k3

0ω0/u4
0

)
SR and

S̃s ≡ (
k3

0ω0/(u2
0s̃)

)
SR, s̃ and where s̃ is the rms of the entropy fluctuations. We have
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introduced for convenience the characteristic frequency ω0 and the characteristic
wavenumber k0; they are defined as:

ω0 ≡ k0 u0 (11.48)

k0 ≡ 2π

�
(11.49)

where� is a characteristic size derived from E(k) and u0 is the characteristic velocity
given by (11.39). For future use, it is also convenient to define a characteristic time
τ0 as:

τ0 = 2π

k0u0
= �

u0
(11.50)

From (11.46) we can show that the driving by the Reynolds stress is locally
proportional to the kinetic energy flux. Indeed, the flux of kinetic energy in the
vertical direction is by definition:

Fkin ≡ wEkin = w

(
1

2
ρ0 u2

)
= 3

2

√
3

�
ρ0 u3

0, (11.51)

where Ekin ≡ (1/2)ρ0u2 is the kinetic energy per unit volume. Substituting (11.51)
into (11.46) yields the relation:

C2
R ∝

M∫

0

dm Fkin�
4
∣∣∣∣dξr

dr

∣∣∣∣
2

S̃R(m, ωosc). (11.52)

Concerning the driving by the entropy fluctuations, we can show that locally this
driving does not only depend on Fkin but also on the convective flux (Fc). Indeed,
lets define as GMK the quantity:

R ≡ αs s̃

ρ0u2
0

(11.53)

Substituting (11.53) into (11.47) yields the relation:

C2
S ∝

M∫

0

dm Fkin�
4R2F2

(
ω0

ωosc

)2

S̃S(m, ωosc) (11.54)

where we have defined as in SG the quantity F2 ≡ �2gr. Finally, since R ∝ Fc/Fkin
(see Samadi et al. [32]), we can conclude that locally the driving by entropy source
term is proportional to Fkin and to the square of the ratio R ∝ Fc/Fkin.
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11.5 Turbulent Spectrum

As seen in Sect. 11.4.6, the model of stochastic excitation developed by SG involves
E(k, ω), the turbulent kinetic spectrum as well as Es(k, ω), the spectrum associated
with the turbulent entropy fluctuations. Both spectra are split in terms of a time
averaged spectrum (E(k) for the velocity and Es(k) for the entropy fluctuations),
and a frequency component χk(ω) (see Sect. 11.4.6). Different prescriptions were
investigated for both components. The results of these investigations are summarized
in Sect. 11.5.1 for E(k) and in Sect. 11.5.2 for χk(ω).

11.5.1 Time Averaged Spectrum, E(k)

Two approaches are commonly adopted for prescribing E(k). The classic one is
to assume an analytical function derived either from theoretical considerations or
empirical ones. The more commonly used analytical spectrum is the so-called Kol-
mogorov spectrum [33], which derives originally from Oboukhov [34]’s postulate
that energy is transferred from the large scales to the small scales at a constant rate.
Other theoretical spectra, such as the so-called Spiegel’s spectrum [35], or purely
empirical spectra, such as those proposed by Musielak et al. [36], were also consid-
ered. All of these analytical functions differ from each other by the way E(k) varies
with k. But for all of them, it is required to set a priori the characteristic wavenum-
ber, k0, at which energy is injected into the turbulent cascade. The second approach
consists to obtain E(k) directly from hydrodynamical 3D simulations. This method
has two advantages: it provides both the k dependence of E(k) and the characteristic
wavenumber k0. On the other hand, the inconvenient is that such method depends
on the quality of the 3D hydrodynamical simulation.

These two approaches have been compared in Samadi et al. [37]. Among the
different analytical functions tested, the best agreement with a solar 3D simulation
was found with the so-called “Extended Kolmogorov Spectrum” defined by Musielak
et al. [36]. This spectrum increases at low scales as k+1 and decreases at low scales
according to the Kolmogorov spectum, i.e. as k−5/3. However, due to the limited
spatial resolution of the solar simulation used, the Kolmogorov scaling is validated
over a limited range only. Nevertheless, the major part of the excitation arises from
the most-energetic eddies, also refered to the energy bearing eddies. Accordingly, the
contribution of the small scales, that are not resolved by the present 3D simulations,
are expected to be relatively small. However, to confirm this, a quantitative estimate
must be undertaken.

More important is the choice for the characteristic wavenumber k0. Indeed, the
integrands of (11.46) and (11.47) are both proportional to k−4

0 . Accordingly, the
computed P are very sensitive to the choice for k0. This characteristic wavenumber
can be obtained from 3D simulations. However, by default, one usually relates k0 to
the mixing-length �MLT according to:
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Fig. 11.3 Eddy
time-correlation function,
χk , as a function of
frequency ν for the layer
where the radial component
of the velocity is maximum.
The filled dots represent χk
obtained from a solar 3D
simulation with an horizontal
resolution of � 25 km [17].
χk is shown here for the
wavenumber k at which
E(k) peaks. The solid line
represents a Lorentzian
function and the dashed line
a Gaussian function

k0 = kMLT
0 ≡ 2π

β�MLT
(11.55)

where �MLT = αHp is the mixing-length, α the mixing-length parameter, Hp the
pressure scale height, and β a free parameter, which is usually set to a value of
the order of one. The solar 3D simulation used by Samadi et al. [37] indicates that
in the Sun k0 � 3.6 Mm −1 at the top of the excitation region. This characteristic
wavenumber corresponds to an horizontal size of the granules of �g = 2π/k0 ∼
2 Mm. This horizontal size is reached at the top of the excitation region with a value
of β that depends on the adopted value for α and the solar 1D model used. For other
stars, 3D simulations are rarely available. In that case, one usually assumes for β the
same value that the one adopted for the Sun. Hence, an open and important question
is whether or not the parameter β can be kept the same for other stars as for the Sun.

11.5.2 Eddy Time-Correlation, χk(ω)

Most of the theoretical formulations explicitly or implicitly assume a Gaussian func-
tion for χk(ω) [11–14], 16, 38]. However, 3D hydrodynamical simulations of the
outer layers of the Sun show that, at the length associated with the energy bearing
eddies, χk is rather Lorentzian [17]. This is well illustrated in Fig. 11.3. As pointed-
out by Chaplin et al. [16], a Lorentzian χk is also a result predicted for the largest,
most-energetic eddies by the time-dependent mixing -length formulation derived by
Gough [31]. Therefore, there is some numerical and theoretical evidences that χk is
rather Lorentzian at the length scale of the energy bearing eddies.

As shown by Samadi et al. [17], calculation of the mode excitation rates based on
a Gaussian χk results for the Sun in a significant under-estimation of the maximum
of P whereas a better agreement with the observations is found when a Lorentzian
χk is used. A similar conclusion is reached by Samadi et al. [5] in the case of the
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star α Cen A. These results are illustrated in Fig. 11.5 in the case of the Sun and in
Fig. 11.6 in the case of α Cen A.

The excitation of low-frequency modes (ν � 3 mHz) is mainly due to the large
scale eddies. However, the higher the frequency the more important the contribution
of the small scales. 3D solar simulations show that, at small scales, χk is neither
Lorentzian nor Gaussian [39]. Hence, according to [39], it is impossible to separate
the spatial component E(k) from the temporal component at all scales with the
same simple analytical functions. However, such results are obtained using Large
Eddy Simulation (LES). The way the small scales are treated in LES can affects
our description of turbulence. Indeed, He et al. [40] have shown that LES results
in a χk(ω) that decreases at all resolved scales too rapidly with ω with respect
to direct numerical simulations (DNS). Moreover, Jacoutot et al. [41] found that
computed mode excitation rates depend significantly on the adopted sub-grid model.
Furthermore, Samadi et al. [42] have shown that, at a given length scale, χk tends
toward a Gaussian when the spatial resolution is decreased. This is illustrated in
Fig. 11.4 by comparison with Fig. 11.3. In summary, the numerical resolution or the
sub-grid model can substantially affect our description of the small scales. Improving
the modeling of the excitation of the high frequency modes then requires more
realistic and more resolved hydrodynamical 3D simulations.

Up to now, only analytical functions were assumed for χk(ω). We have here
implemented, for the calculation of P, the eddy time-correlation function derived
directly from long time series of 3D simulation realizations with an intermediate
horizontal resolution �50 km As shown in Figs. 11.5 and 11.6, the mode excitation
rates, P, obtained from χ3D

k , are found to be comparable to that obtained assuming
a Lorentzian χk, except at high frequency in the case of the Sun. This is obviously
the direct consequence of the fact that a Lorentzian χk reproduces rather well χ3D

k
(see Fig. 11.3), except at high frequency where χ3D

k decreases more rapidly than the
Lorentzian function (see Fig. 11.4, left). At high frequency, calculations based on a
Lorentzian χk result in larger P and reproduce better the helioseismic constraints
than those based on χ3D

k (see Fig. 11.5). This indicates perhaps that χ3D
k decreases

more rapidly with frequency than it should. This is consistent with He et al. [40]’s
results who found that LES predict a too rapidly decrease with ν compared to the
DNS (see above).

Chaplin et al. [16] also found that the use of a Gaussianχk severely under-estimates
the observed solar mode excitation rates. However, in contrast with Samadi et al. [17],
they mention that a Lorentzian χk results in a severe over-estimation for the low-
frequency modes. In order to illustrate the results by Chaplin et al. [16], we have
computed the solar mode excitation rates using their formalism and a solar envelope
equilibrium model similar to the one considered by these authors (see [37]). The result
is shown in Fig. 11.7. We clearly see that the mode excitation rates computed using
a Gaussian χk overestimate by ∼20 the seismic constraints. This result is consistent
with this found by Samadi et al. [17]. On the other hand, in contrast with Samadi
et al. [17], the modes with frequency below ν ∼ 2 mHz are severely over-estimated
when a Lorentzian χk is assumed. It should be pointed out that the excitation of
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Fig. 11.4 Top: Same as
Fig. 11.3 for a solar 3D
simulation with an horizontal
resolution of �50 km [41].
Bottom: Same as top for a
solar 3D simulation with an
horizontal resolution of
�120 km

Fig. 11.5 Solar p-mode
excitation rates as a function
of ν. Filled circles and
diamonds correspond as in
Fig. 11.1 to seismic data
from SOHO /GOLF and
BiSON network respectively.
The lines correspond to
semi-theoretical calculations
based on different choices
for χk: Lorentzian χk (solid
line),χk3D i.e. χk derived
directly from the solar 3D
simulation (dashed line), and
a Gaussian χk (dot-dashed
line)

modes with frequency ν � 2 mHz occurs in a region more extended than covered
by the solar 3D simulation used by Samadi et al. [37]. On the other hand, the pure
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Fig. 11.6 Same as in
Fig. 11.5 for the case of α
Cen A

Fig. 11.7 Same as Fig. 11.5.
The lines correspond to
calculations using the
formalism by Chaplin et al.
[16]. Two choices for χk was
considered: a Lorentzian χk
(solid line) and a Gaussian
χk (dashed line). In both
calculations, driving due to
the entropy fluctuations is
not included

1D modeling by Chaplin et al. [16], includes all of the convective zone. The severe
over-estimation at low frequency of the mode excitation rates, is explained by the
authors by the fact that, at a given frequency, a Lorentzian χk decreases too slowly
with depth compared to a Gaussian χk . Consequently, for the low-frequency modes,
a substantial fraction of the integrand of (11.41) arises from large eddies situated
deep in the Sun. This might suggest that, in the deep layers, the eddies that contribute
efficiently have rather a Gaussian χk . However, this remains an open issue.

11.6 Closure Models and Anisotropy

The decomposition of (11.35) assumes the quasi-normal approximation (QNA).
However, it is well known that the departure from the QNA is important in a strongly
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turbulent medium. In addition, a closure model based on the QNA does not ensure the
positiveness of the energy (see details in e.g. [28]). Furthermore, the QNA is strictly
valid only for normally distributed fluctuating quantities with zero mean. However,
the upper-most part of the convection zone is a turbulent convective medium com-
posed of essentially two flows that are asymmetric with respect to each other. Hence,
in such a medium, the probability distribution function of the fluctuations of the ver-
tical velocity and temperature do not follow a Gaussian law. As verified by Belkacem
et al. [43] and Kupka and Robinson [44], departure from the QNA is important in the
upper part of the solar convective zone. Indeed, this approximation under estimates,
in the quasi-adiabatic region, by ≈ 50% the fourth-order moment of the vertical
velocity derived from a solar 3D simulation.

The term in the LHS of (11.35) corresponds to a two-point correlation product
involving the velocity, i.e. 〈(ui u j )1(ukul)2〉(r, τ ) where r and τ are the spatial cor-
relation and temporal correlation lengths respectively. For r → 0 and τ → 0,
this term reduces to a one-point correlation product, 〈ui u j ukul〉, also referred
as a fourth-order moment (FOM hereafter). As we shall see below, it is possi-
ble to derive an improved closure model for this term that does not rely on the
QNA. However, we still require a prescription for the two point correlation prod-
ucts involving the velocity (〈(ui u j )1(ukul)2〉(r, τ )) and the entropy fluctuations
(〈(ust )1(ust )2〉(r, τ )). For radial modes or low � order modes, only the radial com-
ponent of the velocity (w) matters. Hence, for these modes we require a prescription
for 〈w2

1w
2
2〉(r, τ ) and 〈(wst )1(wst )2〉(r, τ ). By default, Belkacem et al. [18] have

proposed that 〈w2
1w

2
2〉(r, τ ) varies with r and τ in the same way than in the QNA

(11.35), that is:

〈w2
1w

2
2〉 = Kw

3
〈w2

1, w
2
2〉QNA (11.56)

where Kw is a constant and 〈w2
1w

2
2〉QNA is the two-point correlation product given

for w according to the QNA (11.35). Accordingly, the contribution of the Reynolds
stress (C2

R, (11.41) is modified as:

C2
R = 4π3G

M∫

0

dmρ0

(
dξr

dr

)2 Kw

3
SR(m, ωosc) (11.57)

Note that the contribution of the entropy fluctuations (C2
S, (11.42) still assumes the

QNA. This inconsistency has a small impact on computed mode excitation rates
since C2

S is significantly smaller than C2
R, at least for stars that are not too hot (but

see Sect. 11.8).
The constant Kw is determined in the limit case where r → 0 and τ → 0. Indeed,

when r → 0 and τ → 0, we have:

〈w4〉 = Kw

3
〈w4〉QNA, (11.58)
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where 〈w4〉 is by definition the fourth-order moment (FOM hereafter) associated
with w and 〈w4〉QNA is the one given by the QNA. In the same way, (11.35) gives:

〈w4〉QNA = 3〈w2〉2. (11.59)

Using (11.58) and (11.59), we then derive the constant Kw :

Kw = 3
〈w4〉

〈w4〉QNA
= 〈w4〉

〈w2〉2 , (11.60)

which is by definition the Kurtosis. This quantity measures the oblateness of the
probability density function (see e.g. [43]). For normally distributed w we have
Kw = 3. The Kurtosis then measures the departure of the FOM from the QNA.

closure models more sophisticated than the QNA can be used. Among those, the
two-scale mass flux model [45, 46] takes the asymmetries in the medium into account
but is only applicable for quasi-laminar flows. For Kw, Gryanik and Hartmann [44]
obtained the following expression:

Kw = (1 + S2
w) (11.61)

with the skewness, Sw, given by:

Sw ≡ 〈w3〉
〈w〉3/2 = 1 − 2a√

a(1 − a)
(11.62)

where a is the mean fractional area occupied by the updrafts in the horizontal plane.
In the QNA limit, i.e. when the random quantities are distributed according to a
Normal distribution with zero mean, we necessarily have Sw = 0. Hence, in the
QNA limit, (11.61) does not match the expected value i.e. Kw = 3. Then, Gryanik
and Hartmann [46] proposed to modify (11.61) as follows:

Kw = 3(1 + 1

3
S2
w). (11.63)

Figure 11.8 shows that the FOM based on (11.63) with Sw given by (11.62), results
in a negligible improvement with respect to the QNA. However, when Sw is derived
directly from the 3D simulation and plugged into (11.63), (11.63) is then a very good
evaluation of the FOM derived from a 3D simulation of the outer layer of the Sun as
verified by Belkacem et al. [43] and Kupka and Robinson [44].

Belkacem et al. [18] have generalized Gryanik and Hartmann [46]’s approach
by taking the skewness introduced by the presence of up- and down-drafts and the
turbulent properties of each flow into account. Accordingly, they have derived a
more accurate expression for Sw (see the expression in [43]). As shown in Fig. 11.8,
calculations of the FOM based on (11.63) and their expression for Sw reproduce
rather well—in the quasi-adiabatic region—the FOM derived from the solar 3D
simulation.
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Fig. 11.8 Fourth-order moment (FOM) of the velocity, 〈w4〉 = Kw〈w2〉2, as a function of depth
z, normalized to the FOM derived from the 3D simulation . In all cases the Kurtosis Kw, (11.60)
is calculated according to (11.63) but with different skewness, Sw. The solid line Sw is computed
according to Belkacem et al. [43] closure model, the dashed line assumes Gryanik & Hartmann
[46] expression for Sw (11.62) and finally the dotted line assumes the QNA, that is Sw = 0 and
Kw = 3

Belkacem et al. [18] have computed mode excitation rates, P according to (11.57)
with the Kurtosis Kw given by (11.63) and with the skewness Sw computed according
to Belkacem et al. [43] closure model. The maximum in P is found about 30% larger
than in calculations based on the QNA and fits better the maximum in P derived
from the helioseismic data. This increase is significantly larger than the entropy
contribution (the term SS in (11.42), which is of the order of ∼15%, see Sect. 11.8).
We stress that, however, 30% is of the same order as the difference between seismic
constraints of different origins (SOHO /GOLF, GONG, BiSON). These results are
illustrated in Fig. 11.9.

11.7 Importance of the Stellar Stratification and Chemical
Composition

11.7.1 Role of the Turbulent Pressure

Rosenthal et al. [47] have shown that taking the turbulent pressure into account
in a realistic way in the 1D global solar models results in a much better agreement
between observed and theoretical mode frequencies of the Sun. Following Rosenthal
et al. [47], Samadi et al. [5] have studied the importance for the calculation of the
mode excitation rates of taking the turbulent pressure into account in the averaged 1D
model. For this purpose, they have built two 1D models representative of the star α
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Fig. 11.9 Same as in Fig. 11.5. The thick lines correspond to calculations where the Reynolds stress
contribution is computed according to (11.57). The Kurtosis (Kw) is computed here in a different
manner: for the solid line Kw is obtained directly from a 3D solar simulation, for the dashed line
the Kurtosis is calculated according to (11.63) where the skewness (Sw) is obtained from Belkacem
et al. [43] closure model, and finally for the dot-dashed line we have assumed the QNA, that is
Sw = 0 and Kw = 3

Cen A. One model (here refered as the “patched” model), has its surface layers taken
directly from a fully compressible 3D hydrodynamical numerical model. A second
model (here refered as“standard” model), has its surface layers computed using
standard physics, in particular convection is described according to Böhm-Vitense
[48]’s mixing -length local theory of convection (MLT) and turbulent pressure is
ignored.

Samadi et al. [5] found that the calculations of P involving eigenfunctions com-
puted on the basis of the “patched” global 1D model reproduce much better the
seismic data derived for α Cen A than calculations based on the eigenfunctions
computed with the “standard” stellar model, i.e. built with the MLT and ignoring
turbulent pressure. This is because a model that includes turbulent pressure results
in lower mode masses M than a model that ignores turbulent pressure. This can
be understood as follows: Within the super-adiabatic region, a model that includes
turbulent pressure provides an additional support against gravity, hence has a lower
gas pressure and density than a model that does not include turbulent pressure (see
also [47, 49]). As a consequence, mode inertia (11.9) or equivalently mode masses
(11.11) are then lower in a model that includes turbulent pressure.

11.7.2 Role of the Surface Metal Abundance

Samadi et al. [50] have recently studied the role of the surface metal abundance on
the efficiency of the stochastic driving. For this purpose, they have computed two 3D
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Fig. 11.10 Mode excitation rates, P, as a function of the mode frequency (ν) obtained for two 3D
models with the effective temperature and the surface gravity of HD 49933 but with two different
surface metal abundances (see Sect. 11.7.2) and Samadi et al. [50]. The solid line corresponds to
the 3D model with the metal abundance (S0) and the dashed line to metal poor 3D model (S1). The
dot-dashed line corresponds to the mode excitation rates derived for the specific case of HD 49933
as explained in Samadi et al. [50]

hydrodynamical simulations representative—in effective temperature and gravity—
of the surface layers of HD 49933, a star which is rather metal poor compared to the
Sun since its surface iron-to-hydrogen abundance is [Fe/H] =−0.37. One 3D simu-
lation (hereafter labeled as S0) has a solar metal abundance and the other (hereafter
labeled as S1) has [Fe/H] ten times smaller. For each 3D simulation they have build
a “patched” model in the manner of Samadi et al. [5] and computed the acoustic
modes associated with the “patched” model.

As seen in Fig. 11.10, the mode excitation rates P associated with S1 are found to
be about three times smaller than those associated with S0. This difference is related
to the fact that a lower surface metallicity results in a lower opacity, and accordingly
in an higher surface density. In turn, the higher the density, the smaller are the
convective velocities to transport by convection the same amount of energy. Finally,
smaller convective velocities result in a less efficient driving (for details see [50]).
This conclusion is qualitatively consistent with that by Houdek et al. [29] who—on
the basis of a mixing-length approach—also found that the mode amplitudes decrease
with decreasing metal abundance.

Using the seismic determinations of the mode linewidths measured by CoRoT for
HD 49933 [51] and the theoretical mode excitation rates computed for the specific
case of HD 49933, Samadi et al. [52] have derived the theoretical mode amplitudes
of the acoustic modes of HD 49933. Except at rather high frequency (ν � 1.9 mHz),
their amplitude calculations are within approximately 1-σ in agreement with the
mode amplitudes derived from the CoRoT data Samadi et al. [52]. They also show
that assuming a solar metal abundance rather than the observed metal abundance of
the star would result in larger mode amplitudes and hence in a larger discrepancy with
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the seismic data. This illustrates the importance of taking the surface metal abundance
of the solar-like pulsators into account when modeling the mode excitation.

11.8 Contribution of the Entropy Fluctuations

Using the method summarised in Sect. 11.9.2, Stein and Nordlund [25] have com-
puted directly from a 3D simulation of the surface of the Sun the contribution
of the incoherent entropy fluctuations (11.26). They also found that the entropy
fluctuation is small compared to the Reynolds stress contribution. However, as shown
by Samadi et al. [42], the relative contribution of the entropy to the total excitation
rate increases rapidly with the effective temperature, Teff . For instance, the solar-
like pulsator HD 49333 has a significantly higher Teff than the Sun. Samadi et
al. [50] found that for this star the entropy fluctuations contributes up to ∼30%
while it is only about 15% in the case of the Sun (see [42]) and in the case of α
Cen A (see [5]).

As pointed-out by Houdek [22], the solar and stellar 3D simulations performed by
Stein et al. [53] show some partial canceling between the Reynolds stress contribu-
tion (SR, (11.25) and contribution due to the entropy (SS, (11.26)). This cancelation
increases with increasing Teff (see [53]). In the theoretical model of stochastic ex-
citation, the cross terms between the entropy fluctuations and the Reynolds stresses
vanish (see Sect. 11.2). As originally suggested by Houdek [22] and discussed in
Samadi et al. [52], the existence of a partial canceling can decrease the mode am-
plitude and improve the agreement with the seismic observations. However, there is
currently no theoretical modeling of the interference between these two terms (see
the discussion in Sect. 11.11) and in [52]).

11.9 Alternative Approaches

11.9.1 Energy Equipartition

Under certain conditions that we will emphasize below, GK have shown that there
is an equipartition of kinetic energy between an acoustic mode and the resonant
eddy. To derive this principle, GK assume that the acoustic modes are damped by
turbulent viscosity and excited by the Reynolds stresses. We reproduce here their
demonstration. For the sake of simplicity, we will consider modes with ωosc τ0 � 1
where τ0 is the characteristic time of the energy bearing eddies typically located in
the upper part of the convective zone, that is the region where the driving is the most
vigorous. Furthermore, we neglect as did GK the driving by the entropy fluctuations
(11.42). According to (11.40) and (11.52), we have roughly for acoustic modes with
ωosc τ0 � 1 :
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P ∝ 1

I

∫
dm

∣∣∣∣dξr

dr

∣∣∣∣
2

Eeddy�u0, (11.64)

where � is the characteristic size of the energy bearing eddies, u0 their char-
acteristic velocity (11.39), τ0 = �/u0 their characteristic lifetime (11.50), and
Eeddy = (3/2)ρ0u2

0�
3 their total kinetic energy. Let kosc be the vertical oscilla-

tion wave number. We have then dξr/dr = ikoscξr. We further assume that—in the
driving region—the acoustic waves are purely propagating. This assumption then
implies ωosc = kosc cs where cs is the sound speed. Accordingly, we can simplified
(11.64) as:

P ∝ ω2
osc

I

∫
dm

(
ξr

cs

)2

Eeddy�u0. (11.65)

In the region where the mode are excited, Eeddy, u0, and cs vary quite rapidly.
However, again for the sake of simplicity we will assume that these quantities are
constant and evaluate them at the layer where the excitation is the most efficient, i.e.
at the peak of the super-adiabatic temperature gradient. The integration of (11.64)
can be approximated as

P ∝ 1

I

(
ωosc

cs

)2

Eeddy�u0

∫
dmξ2

r . (11.66)

Using the expression of the mode inertia (11.9), we can finally simplify (11.66) as:

P ∝
(
ωosc

cs

)2

Eeddy�u0. (11.67)

Modes damped by turbulent viscosity have their damping rates η given by
[54, 55],

η ∝ 1

3I

∫
dmνt

∣∣∣∣r d

dr

(
ξr

r

)∣∣∣∣
2

, (11.68)

where νt is the turbulent viscosity. The simplest prescription for νt is the concept of
eddy-viscosity. This consists in assuming νt = u0λ = τ0u2

0.Obviously the turbulent
medium is characterized by eddies with a large spectrum of size. However, only
the eddies for which ωoscτλ ≈ 1 are expected to efficiently damp the mode with
frequency ωosc. Since we are looking at the modes such that ωosc τλ � 1, only the
largest eddies efficiently damp the mode, that is the eddies with size�.Accordingly,
we adopt νt = u0�. With the same simplifications and assumptions as those used
for deriving (11.67), we can simplify (11.68) as:

η ∝
(
ωosc

cs

)2

�u0. (11.69)
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From (11.5), (11.67) and (11.69), we then derive the mode kinetic energy:

Eosc ∝ Eeddy. (11.70)

Equation (11.70) highlights an equipartition of kinetic energy between an acoustic
mode and the resonant eddies. Christensen-Dalsgaard and Frandsen [56] used this
“equipartition principle” to derive the first quantitative estimate of solar-like oscil-
lations in stars. The relation of (11.70) was derived by assuming that modes are
damped by turbulent viscosity. However, as pointed-out by Osaki [26], theoretical
mode line-widths, � = η/π, computed in the manner of Goldreich and Keeley [55],
i.e. assuming a viscous damping, are underestimated compared to the observations.
Gough [57] proposed a different prescription for νt . Nevertheless, assuming Gough
[57]’s prescription also results in similar � (see [58]). On the other hand, Xiong et al.
[59] report that the turbulent viscosity is the dominant source of damping of the ra-
dial p modes. As discussed recently by Houdek [60], there is currently no consensus
about the physical processes that contribute dominantly to the damping of p modes.
If the damping due to turbulent viscosity turns out to be negligible, then there is no
reason that the balance between the mode kinetic energy and the kinetic energy of
resonant eddies holds in general.

11.9.2 “Direct” Calculation

The model of stochastic excitation presented in Sect. 11.4 is based on several sim-
plifications and assumptions concerning the turbulence and the source terms. There
is an alternative approach proposed by Nordlund and Stein [61] that does not rely on
such simplifications and assumptions. In such approach, the rate at which energy is
stochastically injected into the acoustic modes is obtained directly from 3D simula-
tions of the outer layers of a star by computing the (incoherent) work performed on
the acoustic mode by turbulent convection. In their approach, the energy input per
unit time into a given acoustic mode is calculated numerically according to (11.74)
of Nordlund and Stein [61] multiplied by S, the area of the simulation box, to get the
excitation rate (in Js−1)

P3D(ωosc) = ω2
oscS

8�νEωosc

∣∣∣∣∣∣
∫

r

dr�P̂nad(r, ωosc)
∂ξr

∂r

∣∣∣∣∣∣
2

(11.71)

where �P̂nad(r, ω) is the discrete Fourier component of the non-adiabatic pressure
fluctuations, �Pnad(r, t), estimated at the mode eigenfrequency ωosc = 2πν0, ξr
is the radial component of the mode displacement eigenfunction, �ν = 1/Ts the
frequency resolution corresponding to the total simulation time Ts and Eωosc is the
normalised mode energy per unit surface area defined in Nordlund and Stein ([61],
their (11.63) as:
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Eωosc = 1

2
ω2

osc

∫

r

drξ2
r ρ

( r

R

)2
. (11.72)

Equation (11.71) corresponds to the calculation of the P dV work associated with
the non-adiabatic gas and turbulent pressure (Reynolds stress) fluctuations. In con-
trast to the pure theoretical models (see Sect. 11.4), the derivation of (11.71) does not
rely on a simplified model of turbulence. For instance, the relation of (11.36) is no
longer required. Furthermore, they do not assume that entropy fluctuations behave
as a passive scalar (11.33). However, as for the theoretical models, it is assumed that
ξr varies on a scale-length larger than the eddies that contributes effectively to the
driving (this is the so-called “length-scale separation”, see Sect. 11.4). In addition,
(11.71) implicitly assumes the quasi-Normal approximation (11.35).

The expression of (11.71) has been applied to the case of the Sun by Stein and
Nordlund [61]. These authors obtain a rather good agreement between P3D (11.71)
and the solar mode excitation rates derived from the GOLF instrument by Roca Cortés
et al. [62]. However, solar mode excitation rates derived by Stein and Nordlund [61]
from the seismic analysis by Roca Cortés et al. [62] are—for a reason that remains
to be understood—systematically lower than those derived from the seismic analysis
by Baudin et al. [4]. Stein et al. [53] have computed P3D (11.71) for a set of stars
located near the main sequence from K to F and a subgiant K IV star. The comparison
between these calculations and those based on SG’s formalism has been undertaken
by Samadi et al. [42]. The maximum in P3D was found systematically lower than
those from calculations based on SG’s formalism (11.40–11.44). These systematic
differences were attributed by Samadi et al. [42] to the low spatial resolution of the
hydrodynamical 3D simulations computed by Stein et al. [53].

11.10 Stochastic Excitation Across the HR Diagram

11.10.1 Mode Excitation Rates

Using several 3D simulations of the surface of main sequence stars, Samadi et al.
[40] have shown that the maximum of the mode excitation rates, Pmax, varies with
the ratio L/M as (L/M)α where L and M are the luminosity and the mass of the
star respectively and α is the slope of this scaling law. Furthermore, they found that
the slope α is rather sensitive to the adopted function for χk : α = 3.1 for a Gaussian
χk and α = 2.6 for a Lorentzian one.

The increase of Pmax with L/M is not surprising: it should first be noticed that,
even though the ratio L/M is the ratio of two global stellar quantities, it nevertheless
essentially characterizes the properties of the stellar surface layers where the mode
excitation is located since L/M ∝ T 4

eff/g. Indeed, by definition of the effective
temperature, Teff , and the stellar radius R, the total luminosity of the star, L , is given
by the Steffan’s law: L = 4πσT 4

eff R2 where σ is Steffan’s constant. Furthermore, the
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surface gravity is g = G M/R2 where G is the gravitational constant. Accordingly,
L/M ∝ T 4

eff/g.
Second, as we will show now, it is possible to roughly explain the dependence of

Pmax with g and T 4
eff . (11.67) can be rewritten as:

P ∝
(
ωosc

cs

)2

Fkin�
4 (11.73)

where

Fkin = 3

2
ρ0 u3

0 (11.74)

is by definition the flux of kinetic energy per unit volume5 and u0 is the characteristic
velocity given by (11.39).

The characteristic size� is approximately proportional to the pressure scale height
Hp (see e.g. [5]). From hydrostatic equilibrium, we have P = ρgHp.Assuming now
the equation of state of a perfect gas, we then derive Hp ∝ T/g. The sound speed is
given by the relation c2

s = �1 P/ρ.Accordingly, using again the perfect gas equation,
we then have c2

S ∝ T . From these simplifications, we can simplify (11.73) as:

P ∝ ω2
osc FkinT 3g−4 (11.75)

In the framework of the mixing -length approach, it can be shown that Fkin is
roughly proportional to the convective flux Fc. Indeed, in this framework, the eddies
are accelerated by the buoyancy force over a distance equal to the mixing-length
� = αHp where α is the mixing-length parameter. Accordingly, the kinetic energy
of the eddies, Eeddy, is given by (see the lecture notes by Bohm-Vitense [63])

Eeddy ≡ 3

2
ρu2

0�
3 = g(�ρ�3)� (11.76)

where �ρ is the difference between the density of the eddy and its surroundings. In
the Boussinesq approximation, the perturbation of the equation of state gives:

�ρ

ρ
∝ �T

T
(11.77)

where�T is the difference between the temperature of the eddy and its surrounding.
Now, the convective flux (also referred to as the enthalpy flux) is by definition the
quantity:

Fc ≡ u0
(
ρC p�T

)
(11.78)

5 for the sake of simplicity we assume here an isotropic medium, accordingly the flux of kinetic
energy is the same in any direction.



11 Stochastic Excitation of Acoustic Modes in Stars 335

where cp = (∂s/∂ ln T )p. Finally, from the definition of (11.74) and the set of
(11.76–11.78), one derives Fkin ∝ g�/T Fc and, since � ∝ T/g, we show finally
that Fkin ∝ Fc.

In the region where the driving is the most efficient, the total energy flux, Ftot,

is no longer totally transported by convection (that is Fc〈Ftot). However, in order
to derive an expression that depends only on the surface parameters of the star, we
will assume that all of the energy is transported by convection ; that is Fc ≈ Ftot =
σT 4

eff ∝ g(L/M) where σ is the Steffan’s constant. Accordingly, (11.75) can be
further simplified as:

P ∝ ω2
oscT 4

eff T 3g−4 ≈ ω2
oscT 7

eff g−4, (11.79)

where we have assumed T = Teff .

Let now defines νmax = ωmax
osc /2π the peak frequency associated with P. This

characteristic frequency can be estimated according to:

νmax ≈ u0/� (11.80)

where the quantity u0/� is estimated in the layer where u0 is maximum. Using
similar simplifications as used previously for P, we can show that

νmax ∝ g(Teff/ρ̄)
1/3, (11.81)

where ρ̄ is the mean density at the photosphere. We assume that ρ̄ is equal to the star
mean density, that is ρ̄ ≈ M/R3 ∝ g/R. Accordingly, we then derive from (11.79)
and (11.81):

Pmax ∝
(

T 4
eff

)23/12
g−3 M1/3, (11.82)

where M is the stellar mass. For main sequence stars lying in the domain where solar-
like oscillations are expected, M1/3 varies very slowly such that it can be ignored in
(11.82). Then, (11.82) can finally be simplified as:

Pmax ∝
(

T 4
eff

)2
g−3. (11.83)

We now clearly see from (11.83) that Pmax as expected increases with increasing
Ftot = σT 4

eff and decreases with increasing g.

11.10.2 Mode Surface Velocity

Prior to the CoRoT mission, only crude and indirect derivations of the averaged mode
linewidth had been proposed for a few stars (see [23, 64, 65]). However, for the ma-
jority of solar-like pulsators observed so far from the ground in Doppler velocity,
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Fig. 11.11 Ratio between Vmax the maximum of the mode velocity relative to the observed solar
value (V 

max = 25.2 cm/s for � = 1 modes, see [23]. Filled dots correspond to the stars for which
solar-like oscillations have been detected in Doppler velocity (see a detailed list of references
in [72].The lines—except the dot-dashed line—correspond to the power laws obtained from the
predicted scaling laws for Pmax and estimated values of the damping rates ηmax (see text for details).
Results for two different eddy time-correlation functions, χk , are presented: Lorentzian χk (solid
line) and Gaussian χk (dashed line)

such measurements are not available, only the maximum of the mode surface veloc-
ity (Vmax hereafter) is in general accessible. For the numerous solar-like pulsators
observed from the ground, we must compute the mode surface velocity according to
(11.13), which requires the knowledge of not only P but also of the mode damping
rates (η = π�).

Houdek et al. [29] have computed η for a large set of main sequence models. Using
Balmforth [13]’s formulation of stochastic excitation, they have also computed the
mode excitation rates (P). From their theoretical computations of P and � = η/π,

they have derived vs according to (11.13). Their theoretical calculations for Vmax
result in a scaling law of the form (L/M)β with a exponent β = 1.5 (see [29]).

We have plotted in Fig. 11.11 the quantity Vmax associated with the solar-like
pulsators observed so far in Doppler velocity. Clearly, Vmax increases as (L/M)β

where the exponent β � 0.7. A similar scaling law with the exponent β = 1 was
earlier derived by Kjeldsen and Bedding [66] from the theoretical calculations by
Christensen-Dalsgaard and Frandsen [56]. Houdek et al. [29]’s scaling law signifi-
cantly over-estimates the mode amplitudes in F-type stars. For instance for Procyon
(Teff � 6480 K, L � 6.9 L and L/M � 4.6), this scaling law over-estimates Vmax
by a factor ∼4.

Samadi et al. [42] have derived Vmax using mode damping rates computed by
Houdek et al. [29] and the different scaling laws found for Pmax ∝ (L/M)α. They
also found that Vmax scales as (L/M)β . This is not surprising since Pmax varies as
(L/M)α. Furthermore, the exponent β is found to depend significantly on the choice
of χk : β = 0.7 for a Lorentzian χk and β = 1 for a Gaussian χk . As shown in
Fig. 11.11, the best agreement with the observations is found when a Lorentzian
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χk is assumed. On the other hand, assuming a Gaussian χk results in a larger
exponent β. When theoretical mode amplitudes are calibrated with respect to the
solar mode amplitudes, calculations based on a Gaussian χk over-estimate the am-
plitudes of solar-like pulsators significantly more luminous than the Sun.

Theoretical calculations by Houdek et al. [29] assume a Gaussian χk . Then
according to Samadi et al. [42]’s results, the too large value found for β by Houdek
et al. [29] can partially be explained by the use of a Gaussian χk .However, according
to Houdek [22], their too high value of β might be explained essentially by the mode
damping rates that could be under-estimated by a factor ∼1.8.

11.11 Discussion and Perspectives

The way mode excitation by turbulent convection is modeled is still very simplified.
As discussed below, several approximations must be improved, some assumptions
or hypothesis must be removed.

As seen in Sect. 11.2, the driving efficiency crucially depends on the eddy time-
correlation (χk). Current models assume that χk varies withω in the same way at any
length scale. At the length scale of the energy bearing eddy, there are some strong
indications that χk is Lorentzian rather than Gaussian. However, at smaller scale, it
is not yet clear what is the correct description for χk .

Use of more realistic 3D simulations would be very helpful to represent the correct
dynamic behavior of the small-scales.

Current theoretical models that include the entropy fluctuations in the driving
assume that the entropy fluctuations behave as a passive scalar (see Sect. 11.3). As
a consequence, cross terms between SR and SS vanish. This is a strong hypothesis
that is unlikely to be valid in the super-adiabatic part of the convective zone where
driving by the entropy is important. Indeed, the super-adiabatic layer is a place where
the radiative losses of the eddies are important because of the optically thin layers.
Assuming that the entropy (or equivalently the temperature) is diffusive (11.33) is no
longer valid. Furthermore, departure from incompressible turbulence is the largest
in that layer and, accordingly, the cross terms between SR and SS no longer vanish
(see SG). Therefore, the passive scalar assumption is not valid in the super-adiabatic
layers. To avoid this assumption, one needs to include the radiative losses in the
modeling.

One other approximation concerns the spatial separation between the modes and
the contributing eddies. This approximation is less valid in the super-adiabatic region
where the turbulent Mach number is no longer small, in particular for high � order
modes. This spatial separation can however be avoided if the kinetic energy spectrum
associated with the turbulent elements (E(k)) is properly coupled with the spatial
dependence of the modes (work in progress).

The CoRoT mission, launched 27 December, is precise enough to detect solar-
like oscillations with amplitudes as low as the solar p modes [67]. Furthermore,
thanks to its long term (up to 150 days) and continuous observations, it is possible
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with CoRoT to resolve solar-like oscillations, and hence to measure not only the
mode amplitudes but also directly the mode linewidths (see e.g. [68]). Similarly as
in the case of the Sun, it is now possible with CoRoT to derive direct constraints on
P for stars with different characteristics: evolutionary status, effective temperature,
gravity, chemical composition, magnetic field, rotation, surface convection, etc. We
emphasize below some physical processes and conditions that we expect to address
thanks to the CoRoT data.

Some solar-like pulsators are young stars that show rather strong activity (e.g.
HD 49933, HD 181420, HD 175726, HD 181906,. . .). A high level of activity is
often linked to the presence of strong magnetic field. Effects of the magnetic field
are not taken into account in the calculation of the mode excitation rates. A strong
magnetic field can more or less inhibit convective transport (see e.g. [69, 70]) Fur-
thermore, as shown by Jacoutot et al. [71], a strong magnetic field can significantly
change the way turbulent kinetic energy is spatially distributed and leads to a less
efficient driving of the acoustic modes. In that framework, the CoRoT target HD
175726 is probably an interesting case. Indeed, this star shows both a particularly high
level of activity and solar-like oscillations with amplitudes significantly lower than
expected [72].

Young and active stars rotate usually faster than the Sun. As shown recently by
Belkacem et al. [73], the presence of rotation introduces additional sources of driving.
However, in the case of a moderate rotator such as HD 49933, these additional sources
of driving remain negligible compared to the Reynolds stress and the entropy source
term. On the other hand, the presence of rotation has an indirect effect on mode
driving through the modification of the mode eigenfunctions. An open issue is: will
the CoRoT or the Kepler mission be able to test the expected effect of rotation (see
[71])?

Solar-like oscillations have now been firmly detected in several red giant stars,
from both Doppler velocity measurements (see the review by Bedding and Kjeldsen
[74]) as well as from space based photometry measurements [75, 76]. More recently,
detection of solar-like oscillations by CoRoT in a huge number of red giant stars
has been announced by de Ridder et al. [77]. Why look at solar-like oscillations in
red giant stars? Toward the end of their lives, stars like the Sun greatly expand to
become giant stars. A consequence of this great expand, is the existence of a very
dilute convective envelope. A low density favors a vigorous convection, hence higher
Mach numbers (Mt ). The theoretical models of stochastic excitation are strictly valid
in a medium where Mt is—as in the Sun and α Cen A—rather small. Hence, the
higher Mt , the more questionable the different approximations and the assumptions
involved in the theory. Hence, red giant stars allow us to test the theory of mode driving
by turbulent in more extreme conditions. Finally, most of theories of stochastic
excitation are developed for radial modes only. Dolginov and Muslimov [12], GMK
and Belkacem et al. [19] have considered the non-radial case. There are interesting
applications of such non-radial formalisms, for instance the case of solar g modes
[78], but also g modes in massive stars that can in principle be excited in their central
convective zones [79].
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